Part Number Hot Search : 
M68751R 74457033 TIP35 MSK164B AD002M14 AN158 40100 X9521
Product Description
Full Text Search
 

To Download W2A43C103MAT2A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  avx surface mount ceramic capacitor products www. avx .com version 9.4
how to order - avx part number explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 c0g (np0) dielectric general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 specifications and test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 u dielectric rf/microwave c0g (np0) capaciators (rohs) general information and capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 rf/microwave c0g (np0) capaciators (sn/pb) general information and capacitance range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12 designer kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 x8r dielectric general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15 x7r dielectric general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 specifications and test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-19 x7s dielectric general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 specifications and test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 capacitance range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 x5r dielectric general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 specifications and test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 capacitance range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 y5v dielectric general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 specifications and test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 capacitance range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 mlcc tin/lead termination (ld series) general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30-35 mlcc low profile general specifications / capacitance range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ultrathin ceramic capacitors general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 automotive mlcc general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-39 capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40-42 aps for cots+ applications general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45 mlcc with flexiterm ? general description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 specifications and test methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47-48 capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49-50 flexisafe mlc chips general specifications and capacitance range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 capacitor array capacitor array (ipc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-55 automotive capacitor array (ipc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 multi-value capacitor array (ipc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 part and pad layout dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 low inductance capacitors introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-60 licc (low inductance chip capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61-64 idc (interdigitated capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-68 lga low inductance capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-70 lica (low inductance decoupling capacitor arrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-72 high voltage mlc chips 600v to 5000v applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73-74 tin/lead termination ?b? - 600v to 5000v applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-76 mil-prf-55681/chips cdr01 thru cdr06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77-78 cdr31 thru cdr35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-82 packaging of chip components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 embossed carrier configuration - 8 & 12mm tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 paper carrier configuration - 8 & 12mm tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 bulk case packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 basic capacitor formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88-92 surface mounting guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93-97 ceramic chip capacitors table of contents 1
2 how to order part number explanation commercial surface mount chips example: 08055a101jat2a 0805 size (l" x w") 0201 0402 0603 0805 1206 1210 1812 1825 2220 2225 5 voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v d = 35v 5 = 50v 1 = 100v 2 = 200v 7 = 500v a dielectric a = np0(c0g) c = x7r d = x5r f = x8r g = y5v u = u series w = x6s z = x7s 101 capacitance 2 sig. fig + no. of zeros examples: 100 = 10 pf 101 = 100 pf 102 = 1000 pf 223 = 22000 pf 224 = 220000 pf 105 = 1f 106 = 10f 107 = 100f for values below 10 pf, use ?r? in place of decimal point, e.g., 9.1 pf = 9r1. j* tolerance b = .10 pf c = .25 pf d = .50 pf f = 1% ( 10 pf) g = 2% ( 10 pf) j = 5% k = 10% m = 20% z = +80%, -20% p = +100%, -0% a failure rate a = n/a 4 = automotive t terminations t = plated ni and sn 7 = gold plated u = conductive expoxy for hybrid applications z = flexiterm ? x = flexiterm ? with 5% min lead (x7r & x8r only) contact factory for 1 = pd/ag term 2 packaging available 2 = 7" reel 4 = 13" reel 7 = bulk cass. 9 = bulk contact factory for multiples a special code a = std. high voltage mlc chips example: 1808aa271ka11a contact factory for special voltages * b, c & d tolerance for 10 pf values. standard tape and reel material (paper/embossed) depends upon chip size and thickness. see individual part tables for tape material type for each capacitance value. 1808 avx style 0805 1206 1210 1808 1812 1825 2220 2225 3640 a voltage c = 600v/630v a = 1000v s = 1500v g = 2000v w = 2500v h = 3000v j = 4000v k = 5000v a temperature coefficient a = c0g c = x7r 271 capacitance code (2 significant digits + no. of zeros) examples: k capacitance tolerance a failure rate a=not applicable t1 packaging/ marking 1 = 7" reel 3 = 13" reel 9 = bulk a special code a = standard 10 pf = 100 100 pf = 101 1,000 pf = 102 22,000 pf = 223 220,000 pf = 224 1 f = 105 c0g: j = 5% k = 10% m = 20% x7r: k = 10% m = 20% z = +80%, -20% f = 63v * = 75v e = 150v v = 250v 9 = 300v x = 350v 8 = 400v note: contact factory for availability of termination and tolerance options for specific part numbers. for tin/lead terminations, please refer to ld series note: contact factory for availability of termination and tolerance options for specific part numbers. for tin/lead terminations, please refer to ld series termination 1= pd/ag t = plated ni and sn b = 5% min pb z = flexiterm ? x = flexiterm ? with 5% min lead (x7r only)
3 how to order part number explanation capacitor array example: W2A43C103MAT2A low inductance capacitors (licc) example: 0612zd105mat2a interdigitated capacitors (idc) example: w3l16d225mat3a low inductance decoupling capacitor arrays (lica) example: lica3t183m3fc4aa 0612 size 0306 0508 0612 ld16 ld17 ld18 z voltage 6 = 6.3v z = 10v y = 16v 3 = 25v 5 = 50v d dielectric c = x7r d = x5r 105 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance k = 10% m = 20% a failure rate a = n/a t terminations t = plated ni and sn b = 5% min lead 2 packaging available 2 = 7" reel 4 = 13" reel a thickness see page 64 for codes w style w = rohs l = snpb 3 case size 2 = 0508 3 = 0612 l low inductance esl = 50ph esl = 60ph 1 number of terminals 1 = 8 terminals 6 voltage 4 = 4v 6 = 6.3v z = 10v y = 16v d dielectric c = x7r d = x5r 225 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance m = 20 t termination t = plated ni and sn b = 5% min lead 3 packaging available 1=7" reel 3=13" reel a thickness max. thickness mm (in.) a=0.95 (0.037) s=0.55 (0.022) a failure rate a = n/a lica style & size 3 voltage 5v = 9 10v = z 25v = 3 t dielectric d = x5r t = t55t s = high k t55t 102 cap/section (eia code) 102 = 1000 pf 103 = 10 nf 104 = 100 nf m capacitance tolerance m = 20% p = gmv 3 height code 6 = 0.500mm 3 = 0.650mm 1 = 0.875mm 5 = 1.100mm 7 = 1.600mm f termination f = c4 solder balls- 97pb/3sn h = c4 solder balls?low esr p = cr-cu-au n = cr-ni-au x = none c reel packaging m = 7" reel r = 13" reel 6 = 2"x2" waffle pack 8 = 2"x2" black waffle pack 7 = 2"x2" waffle pack w/ termination facing up a = 2"x2" black waffle pack w/ termination facing up c = 4"x4" waffle pack w/ clear lid a inspection code a = standard b = established reliability testing a code face a = bar b = no bar c = dot, s55s dielectrics d = triangle 4 # of caps/part 1 = one 2 = two 4 = four w style w = rohs l = snpb 2 case size 1 = 0405 2 = 0508 3 = 0612 a array 4 number of caps 3 voltage z = 10v y = 16v 3 = 25v 5 = 50v 1 = 100v c dielectric a = np0 c = x7r d = x5r 103 capacitance code (in pf) 2 sig digits + number of zeros m capacitance tolerance j = 5% k = 10% m = 20% 2a packaging & quantity code 2a = 7" reel (4000) 4a = 13" reel (10000) 2f = 7" reel (1000) t termination code t = plated ni and sn z = flexiterm ? b = 5% min lead x = flexiterm ? with 5% min lead a failure rate a = commercial 4 = automotive note: contact factory for availability of termination and tolerance options for specific part numbers. note: contact factory for availability of termination and tolerance options for specific part numbers. note: contact factory for availability of termination and tolerance options for specific part numbers. note: contact factory for availability of termination and tolerance options for specific part numbers.
4 typical capacitance change envelope: 0 30 ppm/ c %  capacitance +0.5 0 -0.5 -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 temperature c temperature coefficient insulation resistance (ohm-farads) 1,000 10,000 100 0 0 20 40 60 80 temperature c insulation resistance vs temperature 100 impedance,  10 100 1000 frequency, mhz variation of impedance with chip size impedance vs. frequency 1000 pf - c0g (np0) 1.0 0.1 10 1206 0805 1812 1210 impedance,  10 100 1000 frequency, mhz variation of impedance with ceramic formulation impedance vs. frequency 1000 pf - c0g (np0) vs x7r 0805 0.10 0.01 1.00 x7r npo 10.00 %  capacitance +1 +2 0 -1 -2 1khz 10 khz 100 khz 1 mhz 10 mhz frequency  capacitance vs. frequency impedance,  1,000 10,000 100 1 10 100 1000 frequency, mhz variation of impedance with cap value impedance vs. frequency 0805 - c0g (np0) 10 pf vs. 100 pf vs. 1000 pf 10 pf 100 pf 1000 pf 1.0 0.1 10.0 100,000 c0g (np0) dielectric general specifications c0g (np0) is the most popular formulation of the ?temperature-compensating,? eia class i ceramic materials. modern c0g (np0) formulations contain neodymium, samarium and other rare earth oxides. c0g (np0) ceramics offer one of the most stable capacitor dielectrics available. capacitance change with temperature is 0 30ppm/c which is less than 0.3%  c from -55c to +125c. capacitance drift or hysteresis for c0g (np0) ceramics is negligible at less than 0.05% versus up to 2% for films. typical capacitance change with life is less than 0.1% for c0g (np0), one-fifth that shown by most other dielectrics. c0g (np0) formulations show no aging characteristics. 0805 size (l" x w") 5 voltage 6.3v = 6 10v = z 16v = y 25v = 3 50v = 5 100v = 1 200v = 2 500v = 7 a dielectric c0g (np0) = a 101 capacitance code (in pf) 2 sig. digits + number of zeros j capacitance tolerance b = .10 pf (<10pf) c = .25 pf (<10pf) d = .50 pf (<10pf) f = 1% ( 10 pf) g = 2% ( 10 pf) j=5% k = 10% a failure rate a = not applicable t terminations t = plated ni and sn 7 = gold plated 2 packaging 2 = 7" reel 4 = 13" reel 7 = bulk cass. 9 = bulk contact factory for multiples a special code a = std. product part number (see page 2 for complete part number explanation) contact factory for 1 = pd/ag term note: contact factory for availability of termination and tolerance options for specific part numbers. contact factory for non-specified capacitance values.
5 c0g (np0) dielectric specifications and test methods parameter/test np0 specification limits measuring conditions operating temperature range -55oc to +125oc temperature cycle chamber capacitance within specified tolerance freq.: 1.0 mhz 10% for cap 1000 pf q <30 pf: q 400+20 x cap value 1.0 khz 10% for cap > 1000 pf 30 pf: q 1000 voltage: 1.0vrms .2v insulation resistance 100,000m or 1000m - f, charge device with rated voltage for whichever is less 60 5 secs @ room temp/humidity charge device with 300% of rated voltage for dielectric strength no breakdown or visual defects 1-5 seconds, w/charge and discharge current limited to 50 ma (max) note: charge device with 150% of rated voltage for 500v devices. appearance no defects deflection: 2mm capacitance test time: 30 seconds resistance to variation 5% or .5 pf, whichever is greater flexure q meets initial values (as above) stresses insulation initial value x 0.3 resistance solderability 95% of each terminal should be covered dip device in eutectic solder at 230 5oc with fresh solder for 5.0 0.5 seconds appearance no defects, <25% leaching of either end terminal capacitance variation 2.5% or .25 pf, whichever is greater dip device in eutectic solder at 260oc for 60 q meets initial values (as above) seconds. store at room temperature for 24 2 resistance to hours before measuring electrical properties. solder heat insulation meets initial values (as above) resistance dielectric meets initial values (as above) strength appearance no visual defects step 1: -55oc 2o 30 3 minutes capacitance variation 2.5% or .25 pf, whichever is greater step 2: r oom temp 3 minutes q meets initial values (as above) step 3: +125oc 2o 30 3 minutes thermal shock insulation meets initial values (as above) step 4: room temp 3 minutes resistance dielectric meets initial values (as above) repeat for 5 cycles and measure after strength 24 hours at room temperature appearance no visual defects capacitance variation 3.0% or .3 pf, whichever is greater charge device with twice rated voltage in 30 pf: q 350 test chamber set at 125oc 2oc load life q 10 pf, <30 pf: q 275 +5c/2 for 1000 hours (+48, -0). (c=nominal cap) <10 pf: q 200 +10c insulation initial value x 0.3 (see above) remove from test chamber and stabilize at resistance room temperature for 24 hours dielectric meets initial values (as above) before measuring. strength appearance no visual defects capacitance variation 5.0% or .5 pf, whichever is greater store in a test chamber set at 85oc 2oc/ 30 pf: q 350 85% 5% relative humidity for 1000 hours load q 10 pf, <30 pf: q 275 +5c/2 (+48, -0) with rated voltage applied. humidity <10 pf: q 200 +10c insulation initial value x 0.3 (see above) remove from chamber and stabilize at resistance room temperature for 24 2 hours dielectric meets initial values (as above) before measuring. strength 1mm/sec 90 mm
6 c0g (np0) dielectric capacitance range letter acegjkmnpqxyz max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed size 0201 0402 0603 0805 1206 soldering reflow only reflow/wave reflow/wave reflow/wave reflow/wave packaging all paper all paper all paper paper/embossed paper/embossed (l) length mm 0.60 0.03 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 (in.) (0.024 0.001) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (w) width mm 0.30 0.03 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 (in.) (0.011 0.001) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (t) terminal mm 0.15 0.05 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 (in.) (0.006 0.002) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) wvdc 25 50 16 25 50 16 25 50 100 16 25 50 100 200 16 25 50 100 200 500 cap 0.5 a c c c g g g g j j j j j j j j j j j (pf) 1.0 a c c c g g g g j j j j j j j j j j j 1.2a c c cgggg j j j j j j jjjjj 1.5 a a c c c g g g g j j j j j j j j j j j 1.8 a a c c c g g g g j j j j j j j j j j j 2.2 a a c c c g g g g j j j j j j j j j j j 2.7 a a c c c g g g g j j j j j j j j j j j 3.3 a a c c c g g g g j j j j j j j j j j j 3.9 a a c c c g g g g j j j j j j j j j j j 4.7 a a c c c g g g g j j j j j j j j j j j 5.6 a a c c c g g g g j j j j j j j j j j j 6.8 a a c c c g g g g j j j j j j j j j j j 8.2 a a c c c g g g g j j j j j j j j j j j 10 a a c c c g g g g j j j j j j j j j j j 12 a a c c c g g g g j j j j j j j j j j j 15 a a c c c g g g g j j j j j j j j j j j 18 a a c c c g g g g j j j j j j j j j j j 22 a a c c c g g g g j j j j j j j j j j j 27 a a c c c g g g g j j j j j j j j j j j 33 a a c c c g g g g j j j j j j j j j j j 39a c c cgggg j j j j j j jjjjj 47a c c cgggg j j j j j j jjjjj 56a c c cgggg j j j j j j jjjjj 68a c c cgggg j j j j j j jjjjj 82a c c cgggg j j j j j j jjjjj 100a c c cgggg j j j j j j jjjjj 120 c c c g g g g j j j j j j j j j j j 150 c c c g g g g j j j j j j j j j j j 180 c c c g g g g j j j j j j j j j j j 220 c c c g g g g j j j j j j j j j j m 270 c c c g g g g j j j j m j j j j j m 330 c c c g g g g j j j j m j j j j j m 390 c c c g g g j j j j m j j j j j m 470 c c c g g g j j j j m j j j j j m 560 g g g j j j j m j j j j j m 680 g g g j j j j j j j j j p 820 g g g j j j j j j j j m 1000 g g g j j j j j j j j q 1200 jjj j jjjq 1500 jjj j jjmq 1800 jjj j jmm 2200 jjn j jmp 2700 jjn j jmp 3300 jj j jmp 3900 jj j jmp 4700 jj j jmp 5600 jjm 6800 mm 8200 mm cap 0.010 mm (f) 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 wvdc 25 50 16 25 50 16 25 50 100 16 25 50 100 200 16 25 50 100 200 500 size 0201 0402 0603 0805 1206 l     w     t t preferred sizes are shaded
7 c0g (np0) dielectric capacitance range preferred sizes are shaded size 1210 1812 1825 2220 2225 soldering reflow only reflow only reflow only reflow only reflow only packaging paper/embossed all embossed all embossed all embossed all embossed (l) length mm 3.20 0.20 4.50 0.30 4.50 0.30 5.70 0.40 5.72 0.25 (in.) (0.126 0.008) (0.177 0.012) (0.177 0.012) (0.225 0.016) (0.225 0.010) (w) width mm 2.50 0.20 3.20 0.20 6.40 0.40 5.00 0.40 6.35 0.25 (in.) (0.098 0.008) (0.126 0.008) (0.252 0.016) (0.197 0.016) (0.250 0.010) (t) terminal mm 0.50 0.25 0.61 0.36 0.61 0.36 0.64 0.39 0.64 0.39 (in.) (0.020 0.010) (0.024 0.014) (0.024 0.014) (0.025 0.015) (0.025 0.015) wvdc 25 50 100 200 500 25 50 100 200 500 50 100 200 50 100 200 50 100 200 cap 0.5 (pf) 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 j 12 j 15 j 18 j 22 j 27 j 33 j 39 j 47 j 56 j 68 j 82 j 100 j 120 j 150 j 180 j 220 j 270 j 330 j 390 m 470 m 560 j j j j m 680 j j j j m 820 j j j j m 1000 j j j j m k k k k m m m m m m p 1200 j j j m m k k k k m m m m m m p 1500 j j j m m k k k k m m m m m m p 1800 j j j m k k k k m m m m m m p 2200 j j j q k k k k p m m m m m p 2700 j j j q k k k p q m m m m m p 3300 j j j k k k p q m m m x m m p 3900 j j m k k k p q m m m x m m p 4700 j j m k k k p q m m m x x x m m p 5600 j j k k m p x m m m x x x m m p 6800 j j k k m x m m m x x x m m p 8200 j j k m m m m x x x m m p cap 0.010 j j k m m m m x x x m m p (f) 0.012 j j k m m m x x x m m p 0.015 m m m m x x x m m y 0.018 m m p m x x x m m y 0.022 m m p x x m y y 0.027 m m p x x p y y 0.033 m m p x x p 0.039 m m p y p 0.047 m m p y p 0.068 m m p 0.082 m m q 0.1 q wvdc 25 50 100 200 500 25 50 100 200 500 50 100 200 50 100 200 50 100 200 size 1210 1812 1825 2220 2225 l     w     t t letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed
rf/microwave c0g (np0) capacitors (rohs) ultra low esr, ?u? series, c0g (np0) chip capacitors 8 a b d d e c a b c a b d d e c a b d d e c general information ?u? series capacitors are c0g (np0) chip capacitors spe - cially designed for ?ultra? low esr for applications in the communications market. max esr and effective capacitance are met on each value producing lot to lot uniformity. sizes available are eia chip sizes 0603, 0805, and 1210. size a b c d e 0402 0.0390.004 (1.000.1) 0.0200.004 (0.500.1) 0.024 (0.6) max n/a n/a 0603 0.0600.010 (1.520.25) 0.0300.010 (0.760.25) 0.036 (0.91) max 0.0100.005 (0.250.13) 0.030 (0.76) min 0805 0.0790.008 (2.010.2) 0.0490.008 (1.250.2) 0.0400.005 (1.020.127) 0.0200.010 (0.510.255) 0.020 (0.51) min 1210 0.1260.008 (3.20.2) 0.0980.008 (2.490.2) 0.0500.005 (1.270.127) 0.0250.015 (0.6350.381) 0.040 (1.02) min electrical characteristics capacitance values and tolerances: size 0402 - 0.2 pf to 22 pf @ 1 mhz size 0603 - 1.0 pf to 100 pf @ 1 mhz size 0805 - 1.6 pf to 160 pf @ 1 mhz size 1210 - 2.4 pf to 1000 pf @ 1 mhz temperature coefficient of capacitance (tc): 030 ppm/c (-55 to +125c) insulation resistance (ir): 10 12 min. @ 25c and rated wvdc 10 11 min. @ 125c and rated wvdc working voltage (wvdc): size working voltage 0402 - 50, 25 wvdc 0603 - 200, 100, 50 wvdc 0805 - 200, 100 wvdc 1210 - 200, 100 wvdc dielectric working voltage (dwv): 250% of rated wvdc equivalent series resistance typical (esr): 0402 - see performance curve, page 9 0603 - see performance curve, page 9 0805 - see performance curve, page 9 1210 - see performance curve, page 9 marking: laser marking eia j marking standard (except 0603) (capacitance code and tolerance upon request). military specifications meets or exceeds the requirements of mil-c-55681 0805 case size 0402 0603 0805 1210 1 voltage code 3 = 25v 5 = 50v 1 = 100v 2 = 200v u dielectric = ultra low esr 100 capacitance j capacitance tolerance code b = 0.1pf c = 0.25pf d = 0.5pf f = 1% g = 2% j = 5% k = 10% m = 20% a failure rate code a = not appli- cable t termination t= plated ni and sn 2 packaging code a special code a = standard how to order eia capacitance code in pf. first two digits = significant figures or ?r? for decimal place. third digit = number of zeros or after ?r? significant figures. 2 = 7" reel 4 = 13" reel 9 = bulk dimensions: inches (millimeters) 0402 0603 0805 1210 inches (mm) note: contact factory for availability of termination and toler- ance options for specific part numbers. rohs compliant pb: free
rf/microwave c0g (np0) capacitors (rohs) ultra low esr, ?u? series, c0g (np0) chip capacitors 9 3.9 pf 4.7 pf 5.1 pf 6.8 pf 10.0 pf 15.0 pf 1 0.1 0.01 0 500 1000 1500 2000 2500 frequency (mhz) esr (ohms) typical esr vs. frequency 0603 ?u? series 10 pf 15 pf 3.3 pf 1 0.1 0.01 0 500 1000 1500 2000 2500 frequency (mhz) esr (ohms) typical esr vs. frequency 0402 ?u? series 10.0 pf 100 pf 1 0.1 0.01 0 500 1000 1500 2000 2500 frequency (mhz) esr (ohms) typical esr vs. frequency 0805 ??series 10 pf 100 pf 300 pf 1 0.1 0.01 0 500 1000 1500 2000 frequency (mhz) esr (ohms) typical esr vs. frequency 1210 ??series capacitance range ultra low esr, ?u? series esr measured on the boonton 34a available size cap (pf) tolerance 0402 0603 0805 1210 0.2 b,c 50v n/a n/a n/a 0.3 0.4 0.5 b,c 0.6 b,c,d 0.7 0.8 0.9 b,c,d available size cap (pf) tolerance 0402 0603 0805 1210 1.0 b,c,d 50v 200v 200v 200v 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 b,c,d 6.8 b,c,j,k,m available size cap (pf) tolerance 0402 0603 0805 1210 7.5 b,c,j,k,m 50v 200v 200v 200v 8.2 9.1 b,c,j,k,m 10 f,g,j,k,m 11 12 13 15 18 200v 20 100v 22 24 27 30 50v 33 n/a 36 39 43 47 51 56 68 75 82 91 available size cap (pf) tolerance 0402 0603 0805 1210 100 f,g,j,k,m n/a 100v 200v 200v 110 50v 120 50v 130 n/a 200v 140 100v 150 160 100v 180 n/a 200 220 270 300 330 360 390 430 200v 470 100v 510 560 620 680 750 820 910 1000 f,g,j,k,m                            rohs compliant pb: free
rf/microwave c0g (np0) capacitors ultra low esr, ?u? series, c0g (np0) chip capacitors typical s erie s re s onant frequency ?u? s erie s chip 1210 0805 0603 0402 10 1.0 0.1 1.0 10 100 1000 capacitance (pf) frequency (ghz) 10
rf/microwave c0g (np0) capacitors (sn/pb) ultra low esr, ?u? series, c0g (np0) chip capacitors general information ?u? series capacitors are c0g (np0) chip capacitors specially designed for ?ultra? low esr for applications in the commu- nications market. max esr and effective capacitance are met on each value producing lot to lot uniformity. sizes available are eia chip sizes 0603, 0805, and 1210. size a b c d e 0402 0.0390.004 (1.000.1) 0.0200.004 (0.500.1) 0.024 (0.6) max n/a n/a 0603 0.0600.010 (1.520.25) 0.0300.010 (0.760.25) 0.036 (0.91) max 0.0100.005 (0.250.13) 0.030 (0.76) min 0805 0.0790.008 (2.010.2) 0.0490.008 (1.250.2) 0.0400.005 (1.020.127) 0.0200.010 (0.510.254) 0.020 (0.51) min 1210 0.1260.008 (3.20.2) 0.0980.008 (2.490.2) 0.0500.005 (1.270.127) 0.0250.015 (0.6350.381) 0.040 (1.02) min capacitance values and tolerances: size 0402 - 0.2 pf to 22 pf @ 1 mhz size 0603 - 1.0 pf to 100 pf @ 1 mhz size 0805 - 1.6 pf to 160 pf @ 1 mhz size 1210 - 2.4 pf to 1000 pf @ 1 mhz temperature coefficient of capacitance (tc): 030 ppm/c (-55 to +125c) insulation resistance (ir): 10 12 min. @ 25c and rated wvdc 10 11 min. @ 125c and rated wvdc working voltage (wvdc): size working voltage 0402 - 50, 25 wvdc 0603 - 200, 100, 50 wvdc 0805 - 200, 100 wvdc 1210 - 200, 100 wvdc dielectric working voltage (dwv): 250% of rated wvdc equivalent series resistance typical (esr): 0402 - see performance curve, page 12 0603 - see performance curve, page 12 0805 - see performance curve, page 12 1210 - see performance curve, page 12 marking: laser marking eia j marking standard (except 0603) (capacitance code and tolerance upon request). military specifications meets or exceeds the requirements of mil-c-55681 a b d d e c a b c a b d d e c a b d d e c ld05 case size ld02 = 0402 ld03 = 0603 ld05 = 0805 ld10 = 1210 1 voltage code 3 = 25v 5 = 50v 1 = 100v 2 = 200v u dielectric = ultra low esr 100 capacitance j capacitance tolerance code b = 0.1pf c = 0.25pf d = 0.5pf f = 1% g = 2% j = 5% k = 10% m = 20% a failure rate code a = not applica- ble b termination b = 5% min lead 2 packaging code 2 = 7" reel 4 = 13" reel 9 = bulk a special code a = standard how to order eia capacitance code in pf. first two digits = significant figures or ?r? for decimal place. third digit = number of zeros or after ?r? significant figures. dimensions: inches (millimeters) 0402 0603 0805 1210 inches (mm) electrical characteristics 11
ultra low esr, ?u? series 3.9 pf 4.7 pf 5.1 pf 6.8 pf 10.0 pf 15.0 pf 1 0.1 0.01 0 500 1000 1500 2000 2500 frequency (mhz) esr (ohms) typical esr vs. frequency 0603 ?u? series 10 pf 15 pf 3.3 pf 1 0.1 0.01 0 500 1000 1500 2000 2500 frequency (mhz) esr (ohms) typical esr vs. frequency 0402 ?u? series 10.0 pf 100 pf 1 0.1 0.01 0 500 1000 1500 2000 2500 frequency (mhz) esr (ohms) typical esr vs. frequency 0805 ??series 10 pf 100 pf 300 pf 1 0.1 0.01 0 500 1000 1500 2000 frequency (mhz) esr (ohms) typical esr vs. frequency 1210 ??series esr measured on the boonton 34a         rf/microwave c0g (np0) capacitors (sn/pb) ultra low esr, ?u? series, c0g (np0) chip capacitors capacitance range available size cap (pf) tolerance ld02 ld03 ld05 ld10 0.2 b,c 50v n/a n/a n/a 0.3 0.4 0.5 b,c 0.6 b,c,d 0.7 0.8 0.9 b,c,d available size cap (pf) tolerance ld02 ld03 ld05 ld10 1.0 b,c,d 50v 200v 200v 200v 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 b,c,d 6.8 b,c,j,k,m available size cap (pf) tolerance ld02 ld03 ld05 ld10 7.5 b,c,j,k,m 50v 200v 200v 200v 8.2 9.1 b,c,j,k,m 10 f,g,j,k,m 11 12 13 15 18 200v 20 100v 22 24 27 30 50v 33 n/a 36 39 43 47 51 56 68 75 82 91 available size cap (pf) tolerance ld02 ld03 ld05 ld10 100 f,g,j,k,m n/a 100v 200v 200v 110 50v 120 50v 130 n/a 200v 140 100v 150 160 100v 180 n/a 200 220 270 300 330 360 390 430 200v 470 100v 510 560 620 680 750 820 910 1000 f,g,j,k,m                            12
?u? series kits designer kits communication kits ?u? series 0402 0603 kit 4000 uz cap. cap. value tolerance value tolerance pf pf 1.0 6.8 1.2 7.5 b (0.1pf) 1.5 8.2 1.8 10.0 2.0 12.0 2.4 b (0.1pf) 15.0 2.7 18.0 3.0 22.0 j (5%) 3.3 27.0 3.9 33.0 4.7 39.0 5.6 47.0 ***25 each of 24 values ***25 each of 15 values kit 5000 uz cap. cap. value tolerance value tolerance pf pf 0.5 4.7 1.0 5.6 b (0.1pf) 1.5 6.8 1.8 b (0.1pf) 8.2 2.2 10.0 2.4 12.0 j (5%) 3.0 15.0 3.6 0805 ***25 each of 30 values kit 3000 uz cap. cap. value tolerance value tolerance pf pf 1.0 15.0 1.5 18.0 2.2 22.0 2.4 24.0 2.7 27.0 3.0 33.0 3.3 b (0.1pf) 36.0 3.9 39.0 j (5%) 4.7 47.0 5.6 56.0 7.5 68.0 8.2 82.0 9.1 100.0 10.0 j (5%) 130.0 12.0 160.0 1210 ***25 each of 30 values kit 3500 uz cap. cap. value tolerance value tolerance pf pf 2.2 36.0 2.7 39.0 4.7 47.0 5.1 b (0.1pf) 51.0 6.8 56.0 8.2 68.0 9.1 82.0 10.0 100.0 j (5%) 13.0 120.0 15.0 130.0 18.0 j (5%) 240.0 20.0 300.0 24.0 390.0 27.0 470.0 30.0 680.0 13
0805 size 0603 0805 1206 5 voltage 25v = 3 50v = 5 f dielectric x8r = f 104 capacitance code (in pf) 2 sig. digits + number of zeros e.g. 10f = 106 k capacitance tolerance j = 5% k = 10% m = 20% 4 failure rate 4 = automotive a = not applicable t terminations t = plated ni and sn z = flexiterm ? u = conductive epoxy for hybrid apps 2 packaging 2 = 7" reel 4 = 13" reel a special code a = std. product x8r dielectric general specifications avx have developed a range of multilayer ceramic capacitors designed for use in applications up to 150oc. these capacitors are manufactured with an x8r dielectric material which has a capacitance variation of 15% between -55oc and +150oc. the need for x8r performance has been driven by customer requirements for parts that operate at elevated temperatures. they provide a highly reliable capacitor with low loss and stable capacitance over temperature. they are ideal for automotive under the hood sensors, measure while drilling and log while drilling. typical applications include wire line logging tools such as gamma ray receivers, acoustic transceivers and micro-resistivity tools. they can also be used as bulk capacitors for high temperature camera modules. x8r capacitors are available as standard and automotive aec-q200 qualified parts. optional termination systems, tin, flexiterm ? and conductive epoxy for hybrid applications are available. providing this series with our flexiterm ? termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage. part number (see page 2 for complete part number explanation) note: contact factory for availability of termination and tolerance options for specific part numbers. letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed 14 size 0603 0805 1206 wvdc 25v 50v 25v 50v 25v 50v 271 cap 270 g g 331 (pf) 330 g g j j 471 470 g g j j 681 680 g g j j 102 1000 g g j j j j 152 1500 g g j j j j 182 1800 g g j j j j 222 2200 g g j j j j 272 2700 g g j j j j 332 3300 g g j j j j 392 3900 g g j j j j 472 4700 g g j j j j 562 5600 g g j j j j 682 6800 g g j j j j 822 8200 g g j j j j 103 cap 0.01 g g j j j j 123 (f) 0.012 g g j j j j 153 0.015 g g j j j j 183 0.018 g g j j j j 223 0.022 g g j j j j 273 0.027 g g j j j j 333 0.033 g g j j j j 393 0.039 g g j j j j 473 0.047 g g j j j j 563 0.056 g n n m m 683 0.068 g n n m m 823 0.082 n n m m 104 0.1 n n m m 124 0.12 n n m m 154 0.15 n n m m 184 0.18 n m m 224 0.22 n m m 274 0.27 mm 334 0.33 mm 394 0.39 m 474 0.47 m 684 0.68 824 0.82 105 1 wvdc 25v 50v 25v 50v 25v 50v size 0603 0805 1206 = aec-q200 qualified
15 x8r dielectric general specifications applications for x8r capacitors ? all market sectors with a 150c requirement ? automotive on engine applications ? oil exploration applications ? hybrid automotive applications ? battery control ? inverter / converter circuits ? motor control applications ? water pump ? hybrid commercial applications ? emergency circuits ? sensors ? temperature regulation engineering tools for high voltage mlc capacitors ? samples ? technical articles ? application engineering ? application support advantages of x8r mlc capacitors ? capacitance variation of 15% between ?55c and +150c ? qualified to the highest automotive aec-q200 standards ? excellent reliability compared to other capacitor technologies ? rohs compliant ? low esr / esl compared to other technologies ? tin solder finish ? flexiterm ? available ? hybrid available ? 50v range available x8r dielectric -25.00 -20.00 -15.00 -10.00 -5.00 0.00 5.00 -60 -40 -20 0 20 40 60 x7r included for comparison 80 100 120 140 160 temperature (c) % cap change 0805, 50v, x8r typical temperature coefficient
16 x7r dielectric general specifications x7r formulations are called ?temperature stable? ceramics and fall into eia class ii materials. x7r is the most popular of these intermediate dielectric constant materials. its tempera- ture variation of capacitance is within 15% from -55c to +125c. this capacitance change is non-linear. capacitance for x7r varies under the influence of electrical operating conditions such as voltage and frequency. x7r dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. part number (see page 2 for complete part number explanation) % cap change 10 -60 -40 -20 0 20 40 60 80 100 120 140 temperature c x7r dielectric typical temperature coefficient 5 0 -5 -10 -15 -20 -25 %  capacitance +10 +20 +30 0 -10 -20 -30 1khz 10 khz 100 khz 1 mhz 10 mhz frequency  capacitance vs. frequency insulation resistance (ohm-farads) 1,000 10,000 100 0 0 20 120 40 60 80 temperature c insulation resistance vs temperature 100 impedance,  10 100 1000 frequency, mhz variation of impedance with cap value impedance vs. frequency 1,000 pf vs. 10,000 pf - x7r 0805 0.10 0.01 1.00 1,000 pf 10,000 pf 10.00 impedance,  110 100 1,000 frequency, mhz variation of impedance with chip size impedance vs. frequency 100,000 pf - x7r 0.1 .01 1.0 1206 0805 10 1210 impedance,  110 100 1,000 frequency, mhz variation of impedance with chip size impedance vs. frequency 10,000 pf - x7r 0.1 .01 1.0 1206 0805 10 1210 0805 size (l" x w") 5 voltage 4v = 4 6.3v = 6 10v = z 16v = y 25v = 3 50v = 5 100v = 1 200v = 2 500v = 7 c dielectric x7r = c 103 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance j = 5%* k = 10% m = 20% * 1f only 2 packaging 2 = 7" reel 4 = 13" reel 7 = bulk cass. 9 = bulk contact factory for multiples a special code a = std. product t terminations t = plated ni and sn 7 = gold plated* z = flexiterm ? ** a failure rate a = not applicable *optional termination **see flexiterm ? x7r section note: contact factory for availability of termination and tolerance options for specific part numbers. contact factory for non-specified capacitance values.
17 x7r dielectric specifications and test methods parameter/test x7r specification limits measuring conditions operating temperature range -55oc to +125oc temperature cycle chamber capacitance within specified tolerance 2.5% for 50v dc rating freq.: 1.0 khz 10% dissipation factor 3.0% for 25v dc rating voltage: 1.0vrms .2v 3.5% for 16v dc rating for cap > 10 f, 0.5vrms @ 120hz 5.0% for 10v dc rating insulation resistance 100,000m or 1000m - f, charge device with rated voltage for whichever is less 120 5 secs @ room temp/humidity charge device with 300% of rated voltage for dielectric strength no breakdown or visual defects 1-5 seconds, w/charge and discharge current limited to 50 ma (max) note: charge device with 150% of rated voltage for 500v devices. appearance no defects deflection: 2mm capacitance test time: 30 seconds resistance to variation 12% flexure dissipation meets initial values (as above) stresses factor insulation initial value x 0.3 resistance solderability 95% of each terminal should be covered dip device in eutectic solder at 230 5oc with fresh solder for 5.0 0.5 seconds appearance no defects, <25% leaching of either end terminal capacitance variation 7.5% dip device in eutectic solder at 260oc for 60 dissipation meets initial values (as above) seconds. store at room temperature for 24 2 resistance to factor hours before measuring electrical properties. solder heat insulation meets initial values (as above) resistance dielectric meets initial values (as above) strength appearance no visual defects step 1: -55oc 2o 30 3 minutes capacitance variation 7.5% step 2: r oom temp 3 minutes dissipation meets initial values (as above) step 3: +125oc 2o 30 3 minutes thermal factor shock insulation meets initial values (as above) step 4: room temp 3 minutes resistance dielectric meets initial values (as above) repeat for 5 cycles and measure after strength 24 2 hours at room temperature appearance no visual defects capacitance variation 12.5% dissipation initial value x 2.0 (see above) load life factor insulation initial value x 0.3 (see above) resistance dielectric meets initial values (as above) strength appearance no visual defects capacitance variation 12.5% load dissipation initial value x 2.0 (see above) humidity factor insulation initial value x 0.3 (see above) resistance dielectric meets initial values (as above) strength charge device with 1.5 rated voltage ( 10v) in test chamber set at 125oc 2oc for 1000 hours (+48, -0) remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. store in a test chamber set at 85oc 2oc/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. 1mm/sec 90 mm
18 x7r dielectric capacitance range preferred sizes are shaded size 0201 0402 0603 0805 1206 soldering reflow only reflow/wave reflow/wave reflow/wave reflow/wave packaging all paper all paper all paper paper/embossed paper/embossed (l) length mm 0.60 0.03 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 (in.) (0.024 0.001) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (w) width mm 0.30 0.03 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 (in.) (0.011 0.001) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (t) terminal mm 0.15 0.05 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 (in.) (0.006 0.002) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) wvdc 10 16 25 16 25 50 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 500 cap 100 a a a (pf) 150 a a a 220 a a a c 330 aaa c ggg jjjjjj k 470 aa c ggg jjjjjj k 680 aa c ggg jjjjjj k 1000 a a c g g g jjjjjj k 1500 a c g g jjjjjj jjjjjjm 2200 a c g g jjjjjj jjjjjjm 3300 a c c g g jjjjjj jjjjjjm 4700 a c c g g jjjjjj jjjjjjm 6800 a c c g g jjjjjj jjjjjjp cap 0.010 a c c g g jjjjjj jjjjjjp (f 0.015 c g g jjjjjj jjjjjm 0.022 c g g jjjjjn jjjjjm 0.033 g g jjjjn jjjjjm 0.047 g g g jjjjn jjjjjm 0.068 g g g jjjjn jjjjjp 0.10 c gggg jjjjn jjjjmp 0.15 g g j j j n n jjjjq 0.22 g g j* j j n n n jjjjq 0.33 nnnnn j jmpq 0.47 j* n n n n n m m m p q 0.68 nnn mmqqq 1.0 j* j* n n n m m q q q 1.5 pqq 2.2 j* p* q q q 3.3 4.7 p* p* q* q* q* 10 p* q* q* 22 q* 47 100 wvdc 10 16 25 16 25 50 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 500 size 0201 0402 0603 0805 1206 letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed *optional specifications ? contact factory
19 x7r dielectric capacitance range letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed preferred sizes are shaded size 1210 1812 1825 2220 2225 soldering reflow only reflow only reflow only reflow only reflow only packaging paper/embossed all embossed all embossed all embossed all embossed (l) length mm 3.20 0.20 4.50 0.30 4.50 0.30 5.70 0.40 5.72 0.25 (in.) (0.126 0.008) (0.177 0.012) (0.177 0.012) (0.225 0.016) (0.225 0.010) (w) width mm 2.50 0.20 3.20 0.20 6.40 0.40 5.00 0.40 6.35 0.25 (in.) (0.098 0.008) (0.126 0.008) (0.252 0.016) (0.197 0.016) (0.250 0.010) (t) terminal mm 0.50 0.25 0.61 0.36 0.61 0.36 0.64 0.39 0.64 0.39 (in.) (0.020 0.010) (0.024 0.014) (0.024 0.014) (0.025 0.015) (0.025 0.015) wvdc 10 16 25 50 100 200 500 50 100 200 500 50 100 25 50 100 200 50 100 cap 100 (pf) 150 220 330 470 680 1000 1500 jjjjjjm 2200 jjjjjjm 3300 jjjjjjm 4700 jjjjjjm 6800 jjjjjjm cap 0.010 jjjjjjm kkkkmm xxxmp (f 0.015 jjjjjjpkkkpmm xxxmp 0.022 jjjjjjqkkkpmm xxxmp 0.033 jjjjjjqkkkxmm xxxmp 0.047 jjjjjj kkkzmm xxxmp 0.068 jjjjjm kkkzmm xxxmp 0.10 jjjjjm kkkzmm xxxmp 0.15 jjjjmz kkp mm xxxmp 0.22 jjjjpz kkp mm xxxmp 0.33 jjjjq kmx mm xxxmp 0.47 mmmmq k p mm x x x m p 0.68 m m p x x m q m p x x m p 1.0nnpxzmxmpxxmp 1.5nnzzz zz m xx mx 2.2xxzzz zz xx m 3.3xxzz z xz 4.7xxzz z xz 10 z z z* z 22 z* z* z 47 100 wvdc 10 16 25 50 100 200 500 50 100 200 500 50 100 25 50 100 200 50 100 size 1210 1812 1825 2220 2225 l     w     t t *optional specifications ? contact factory
20 x7s formulations are called ?temperature stable? ceramics and fall into eia class ii materials. its temperature variation of capacitance is within 22% from ?55c to +125c. this capacitance change is non-linear. capacitance for x7s varies under the influence of electrical operating conditions such as voltage and frequency. x7s dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. x7s dielectric general specifications part number (see page 2 for complete part number explanation) general description typical electrical characteristics 1206 size (l" x w") z voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v 5 = 50v 1 = 100v 2 = 200v z dielectric z = x7s 105 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance k = 10% m = 20% a failure rate a = n/a t terminations t = plated ni and sn 2 packaging 2 = 7" reel 4 = 13" reel 7 = bulk cass. a special code a = std. product %  capacitance +10 +20 +30 0 -10 -20 -30 1khz 10 khz 100 khz 1 mhz 10 mhz frequency  capacitance vs. frequency insulation resistance (ohm-farads) 1,000 10,000 100 0 0 20 120 40 60 80 temperature c insulation resistance vs temperature 100 impedance,  10 100 1000 frequency, mhz variation of impedance with cap value impedance vs. frequency 1,000 pf vs. 10,000 pf - x7s 0805 0.10 0.01 1.00 1,000 pf 10,000 pf 10.00 impedance,  110 100 1,000 frequency, mhz variation of impedance with chip size impedance vs. frequency 100,000 pf - x7s 0.1 .01 1.0 1206 0805 10 1210 impedance,  110 100 1,000 frequency, mhz variation of impedance with chip size impedance vs. frequency 10,000 pf - x7s 0.1 .01 1.0 1206 0805 10 1210 10 5 0 -5 -10 -15 -20 -25 -60 -40 -20 0 20 40 temperature ( c) % cap change 60 80 100 120 140 x7s dielectric typical temperature coefficient note: contact factory for availability of tolerance options for specific part numbers.
21 x7s dielectric specifications and test methods parameter/test x7s specification limits measuring conditions operating temperature range -55oc to +125oc temperature cycle chamber capacitance within specified tolerance 2.5% for 50v dc rating freq.: 1.0 khz 10% dissipation factor 3.0% for 25v dc rating voltage: 1.0vrms .2v 3.5% for 16v dc rating for cap > 10 f, 0.5vrms @ 120hz 5.0% for 10v dc rating insulation resistance 100,000m or 1000m - f, charge device with rated voltage for whichever is less 120 5 secs @ room temp/humidity charge device with 300% of rated voltage for dielectric strength no breakdown or visual defects 1-5 seconds, w/charge and discharge current limited to 50 ma (max) appearance no defects deflection: 2mm capacitance test time: 30 seconds resistance to variation 12% flexure dissipation meets initial values (as above) stresses factor insulation initial value x 0.3 resistance solderability 95% of each terminal should be covered dip device in eutectic solder at 230 5oc with fresh solder for 5.0 0.5 seconds appearance no defects, <25% leaching of either end terminal capacitance variation 7.5% dip device in eutectic solder at 260oc for 60 dissipation meets initial values (as above) seconds. store at room temperature for 24 2 resistance to factor hours before measuring electrical properties. solder heat insulation meets initial values (as above) resistance dielectric meets initial values (as above) strength appearance no visual defects step 1: -55oc 2o 30 3 minutes capacitance variation 7.5% step 2: r oom temp 3 minutes dissipation meets initial values (as above) step 3: +125oc 2o 30 3 minutes thermal factor shock insulation meets initial values (as above) step 4: room temp 3 minutes resistance dielectric meets initial values (as above) repeat for 5 cycles and measure after strength 24 2 hours at room temperature appearance no visual defects capacitance variation 12.5% dissipation initial value x 2.0 (see above) load life factor insulation initial value x 0.3 (see above) resistance dielectric meets initial values (as above) strength appearance no visual defects capacitance variation 12.5% load dissipation initial value x 2.0 (see above) humidity factor insulation initial value x 0.3 (see above) resistance dielectric meets initial values (as above) strength charge device with 1.5 rated voltage ( 10v) in test chamber set at 125oc 2oc for 1000 hours (+48, -0) remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. store in a test chamber set at 85oc 2oc/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. 1mm/sec 90 mm
22 x7s dielectric capacitance range preferred sizes are shaded size 0402 0603 0805 1206 1210 soldering reflow/wave reflow/wave reflow/wave reflow/wave reflow only packaging all paper all paper paper/embossed paper/embossed paper/embossed (l) length mm 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 3.20 0.20 (in.) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (0.126 0.008) (w) width mm 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 2.50 0.20 (in.) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (0.098 0.008) (t) terminal mm 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 0.50 0.25 (in.) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) (0.020 0.010) wvdc 6.3 6.3 25 4 6.3 10 6.3 cap 100 (pf) 150 220 330 470 680 1000 1500 2200 3300 4700 6800 cap 0.010 (f 0.015 0.022 0.033 c 0.047 c 0.068 c 0.10 c 0.15 0.22 g 0.33 g 0.47 g 0.68 g 1.0 g 1.5 n q 2.2 n q 3.3 n q 4.7 n q q 10 22 z 47 100 wvdc 6.3 6.3 25 4 6.3 10 6.3 size 0402 0603 0805 1206 1210 l     w     t t letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed
23 ? general purpose dielectric for ceramic capacitors ? eia class ii dielectric ? temperature variation of capacitance is within 15% from -55c to +85c ? well suited for decoupling and filtering applications ? available in high capacitance values (up to 100f) x5r dielectric general specifications part number (see page 2 for complete part number explanation) general description %  capacitance -60 -40 -20 0 +20 +40 +60 +80 temperature c temperature coefficient 20 15 10 5 0 -5 -10 -15 -20 typical electrical characteristics insulation resistance (ohm-farads) 1,000 10,000 100 0 insulation resistance vs temperature 0 20 120 40 60 80 temperature c 100 1210 size (l" x w") 4 voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v d = 35v 5 = 50v d dielectric d = x5r 107 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance k = 10% m = 20% a failure rate a = n/a t terminations t = plated ni and sn 2 packaging 2 = 7" reel 4 = 13" reel 7 = bulk cass. 9 = bulk a special code a = std. note: contact factory for availability of tolerance options for specific part numbers. contact factory for non-specified capacitance values.
24 x5r dielectric specifications and test methods parameter/test x5r specification limits measuring conditions operating temperature range -55oc to +85oc temperature cycle chamber capacitance within specified tolerance 2.5% for 50v dc rating freq.: 1.0 khz 10% dissipation factor 3.0% for 25v dc rating voltage: 1.0vrms .2v 12.5% max. for 16v dc rating and lower for cap > 10 f, 0.5vrms @ 120hz contact factory for df by pn insulation resistance 10,000m or 500m - f, charge device with rated voltage for whichever is less 120 5 secs @ room temp/humidity charge device with 300% of rated voltage for dielectric strength no breakdown or visual defects 1-5 seconds, w/charge and discharge current limited to 50 ma (max) appearance no defects deflection: 2mm capacitance test time: 30 seconds resistance to variation 12% flexure dissipation meets initial values (as above) stresses factor insulation initial value x 0.3 resistance solderability 95% of each terminal should be covered dip device in eutectic solder at 230 5oc with fresh solder for 5.0 0.5 seconds appearance no defects, <25% leaching of either end terminal capacitance variation 7.5% dip device in eutectic solder at 260oc for 60 dissipation meets initial values (as above) seconds. store at room temperature for 24 2 resistance to factor hours before measuring electrical properties. solder heat insulation meets initial values (as above) resistance dielectric meets initial values (as above) strength appearance no visual defects step 1: -55oc 2o 30 3 minutes capacitance variation 7.5% step 2: r oom temp 3 minutes dissipation meets initial values (as above) step 3: +85oc 2o 30 3 minutes thermal factor shock insulation meets initial values (as above) step 4: room temp 3 minutes resistance dielectric meets initial values (as above) repeat for 5 cycles and measure after strength 24 2 hours at room temperature appearance no visual defects capacitance variation 12.5% dissipation initial value x 2.0 (see above) load life factor insulation initial value x 0.3 (see above) resistance dielectric meets initial values (as above) strength appearance no visual defects capacitance variation 12.5% load dissipation initial value x 2.0 (see above) humidity factor insulation initial value x 0.3 (see above) resistance dielectric meets initial values (as above) strength charge device with 1.5x rated voltage in test chamber set at 85oc 2oc for 1000 hours (+48, -0). note: contact factory for *optional specification part numbers that are tested at < 1.5x rated voltage. remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. store in a test chamber set at 85oc 2oc/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. 1mm/sec 90 mm
25 x5r dielectric capacitance range preferred sizes are shaded size 0201 0402 0603 0805 1206 1210 1812 soldering reflow only reflow/wave reflow/wave reflow/wave reflow/wave reflow only reflow only packaging all paper all paper all paper paper/embossed paper/embossed paper/embossed all embossed (l) length mm 0.60 0.03 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 3.20 0.20 4.50 0.30 (in.) (0.024 0.001) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (0.126 0.008) (0.177 0.012) (w) width mm 0.30 0.03 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 2.50 0.20 3.20 0.20 (in.) (0.011 0.001) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (0.098 0.008) (0.126 0.008) (t) terminal mm 0.15 0.05 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 0.50 0.25 0.61 0.36 (in.) (0.006 0.002) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) (0.020 0.010) (0.024 0.014) wvdc 4 6.3 10 16 25 4 6.3 10 16 25 50 4 6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 25 50 cap 100 a (pf) 150 a 220 a c 330 a c 470 a c 680 a c 1000 a a c 1500 a c 2200 a a c 3300 a c 4700 a c g 6800 a c g cap 0.010 a c g (f) 0.015 c g g g 0.022 a * cc ggg n 0.033 c g g g n 0.047 a * cc ggg n 0.068 c g g n 0.10 a * ccc g g n n 0.15 gnn 0.22 a * a * c * gg nn q 0.33 g g n 0.47 c * c * gnqq x 0.68 g n 1.0 c * c * c * gggj * nn p* qq xxx 1.5 2.2 c * c * g * g * j * j * nnn qq z x 3.3 j * j * j * j * nn qq 4.7 e * j * j * j * nnn * n* qqqq qz 10 k j * n * n * n ** qqqq * xzz * z 22 n* * q * q * q * zzzz * 47 *q * z * 100 z * z* wvdc 4 6.3 10 16 25 4 6.3 10 16 25 50 4 6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 25 50 size 0201 0402 0603 0805 1206 1210 1812 = under development = *optional specifications ? contact factory l     w     t t note: contact factory for non-specified capacitance values letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed
26 y5v dielectric general specifications y5v formulations are for general-purpose use in a limited temperature range. they have a wide temperature characteristic of +22% ?82% capacitance change over the operating temperature range of ?30c to +85c. these characteristics make y5v ideal for decoupling applications within limited temperature range. 0805 size (l" x w") 3 voltage 6.3v = 6 10v = z 16v = y 25v = 3 50v = 5 g dielectric y5v = g 104 capacitance code (in pf) 2 sig. digits + number of zeros z capacitance tolerance z = +80 ?20% a failure rate a = not applicable t terminations t = plated ni and sn 2 packaging 2 = 7" reel 4 = 13" reel a special code a = std. product part number (see page 2 for complete part number explanation) %  capacitance +20 +10 0 -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 temperature c temperature coefficient -60 -50 -40 -30 -20 -10 -70 -80  c/c (%) +20 +40 0 0 % dc bias voltage capacitance change vs. dc bias voltage -60 -40 -20 -100 -80 20 40 60 80 100 insulation resistance (ohm-farads) 1,000 10,000 100 0 +20 +30 +40 +60 +50 +70 +80 +90 temperature c insulation resistance vs. temperature |z| (ohms) 10,000 1,000 10,000 frequency (hz) 0.1  f - 0603 impedance vs. frequency 1 10 100 0.01 0.1 100,000 1,000,000 10,000,000 |z| (ohms) 1,000 10,000 frequency (hz) 0.22  f - 0805 impedance vs. frequency 1 10 100 0.01 0.1 100,000 1,000,000 10,000,000 |z| (ohms) 1,000 10,000 frequency (hz) 1  f - 1206 impedance vs. frequency 1 10 100 0.01 0.1 100,000 1,000,000 10,000,000
27 y5v dielectric specifications and test methods parameter/test y5v specification limits measuring conditions operating temperature range -30oc to +85oc temperature cycle chamber capacitance within specified tolerance 5.0% for 50v dc rating freq.: 1.0 khz 10% dissipation factor 7.0% for 25v dc rating voltage: 1.0vrms .2v 9.0% for 16v dc rating for cap > 10 f, 0.5vrms @ 120hz 12.5% for 10v dc rating insulation resistance 10,000m or 500m - f, charge device with rated voltage for whichever is less 120 5 secs @ room temp/humidity charge device with 300% of rated voltage for dielectric strength no breakdown or visual defects 1-5 seconds, w/charge and discharge current limited to 50 ma (max) appearance no defects deflection: 2mm capacitance test time: 30 seconds resistance to variation 30% flexure dissipation meets initial values (as above) stresses factor insulation initial value x 0.1 resistance solderability 95% of each terminal should be covered dip device in eutectic solder at 230 5oc with fresh solder for 5.0 0.5 seconds appearance no defects, <25% leaching of either end terminal capacitance variation 20% dip device in eutectic solder at 260oc for 60 dissipation meets initial values (as above) seconds. store at room temperature for 24 2 resistance to factor hours before measuring electrical properties. solder heat insulation meets initial values (as above) resistance dielectric meets initial values (as above) strength appearance no visual defects step 1: -30oc 2o 30 3 minutes capacitance variation 20% step 2: room temp 3 minutes dissipation meets initial values (as above) step 3: +85oc 2o 30 3 minutes thermal factor shock insulation meets initial values (as above) step 4: room temp 3 minutes resistance dielectric meets initial values (as above) repeat for 5 cycles and measure after strength 24 2 hours at room temperature appearance no visual defects capacitance variation 30% dissipation initial value x 1.5 (see above) load life factor insulation initial value x 0.1 (see above) resistance dielectric meets initial values (as above) strength appearance no visual defects capacitance variation 30% load dissipation initial value x 1.5 (see above) humidity factor insulation initial value x 0.1 (see above) resistance dielectric meets initial values (as above) strength charge device with twice rated voltage in test chamber set at 85oc 2oc for 1000 hours (+48, -0) remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. store in a test chamber set at 85oc 2oc/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. 1mm/sec 90 mm
28 y5v dielectric capacitance range preferred sizes are shaded size 0201 0402 0603 0805 1206 1210 soldering reflow only reflow/wave reflow/wave reflow/wave reflow/wave reflow only packaging all paper all paper all paper paper/embossed paper/embossed paper/embossed (l) length mm 0.60 0.03 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 3.20 0.20 (in.) (0.024 0.001) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (0.126 0.008) (w) width mm 0.30 0.03 0.50 0.10 .81 0.15 1.25 0.20 1.60 0.20 2.50 0.20 (in.) (0.011 0.001) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (0.098 0.008) (t) terminal mm 0.15 0.05 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 .50 0.25 (in.) (0.006 0.002) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) (0.020 0.010) wvdc 6.3 10 6 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 cap 820 (pf) 1000 a 2200 a 4700 a cap 0.010 a a (f) 0.022 a 0.047 a c 0.10 c c g g k 0.22 g 0.33 g 0.47 c g g 1.0 c c g g n n n m m m n 2.2 c n 4.7 npnn 10.0 nqqxqq 22.0 qx 47.0 wvdc 6.3 10 6 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 size 0201 0402 0603 0805 1206 1210 letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed l     w     t t
29 mlcc tin/lead termination ?b? general specifications avx corporation will support those customers for commercial and military multilayer ceramic capacitors with a termination consisting of 5% minimum lead. this termination is indicated by the use of a ?b? in the 12th position of the avx catalog part number. this fulfills avx?s commitment to providing a full range of products to our customers. avx has provided in the following pages a full range of values that we are currently offering in this special ?b? termination. please contact the factory if you require additional information on our mlcc tin/lead termination ?b? products. np0 refer to page 4 for electrical graphs x7r refer to page 16 for electrical graphs x7s refer to page 20 for electrical graphs x5r refer to page 23 for electrical graphs y5v refer to page 26 for electrical graphs ld05 size ld02 - 0402 ld03 - 0603 ld04 - 0504* ld05 - 0805 ld06 - 1206 ld10 - 1210 ld12 - 1812 ld13 - 1825 ld14 - 2225 ld20 - 2220 5 voltage 6.3v = 6 10v = z 16v = y 25v = 3 35v = d 50v = 5 100v = 1 200v = 2 500v = 7 a dielectric c0g (np0) = a x7r = c x5r = d x8r = f 101 capacitance code (in pf) 2 sig. digits + number of zeros j capacitance tolerance b = .10 pf (<10pf) c = .25 pf (<10pf) d = .50 pf (<10pf) f = 1% ( 10 pf) g = 2% ( 10 pf) j=5% k = 10% m = 20% a failure rate a = not applicable b2 packaging 2 = 7" reel 4 = 13" reel 7 = bulk cass. 9 = bulk contact factory for multiples a special code a = std. product part number (see page 2 for complete part number explanation) *ld04 has the same cv ranges as ld03. note: contact factory for availability of tolerance options for specific part numbers. contact factory for non-specified capacitance values. see flexiterm ? section for cv options terminations b = 5% min lead x = flexiterm ? with 5% min lead** **x7r only
30 mlcc tin/lead termination ?b? capacitance range (np0 dielectric) preferred sizes are shaded letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed size ld02 ld03 ld05 ld06 soldering reflow/wave reflow/wave reflow/wave reflow/wave packaging all paper all paper paper/embossed paper/embossed (l) length mm 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 (in.) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (w) width mm 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 (in.) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (t) terminal mm 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 (in.) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) wvdc 16 25 50 16 25 50 100 16 25 50 100 200 16 25 50 100 200 500 cap 0.5 c c c g g g g j j j j j j j j j j j (pf) 1.0 c c c g g g g j j j j j j j j j j j 1.2 c c c g g g g j j j j j j j j j j j 1.5 c c c g g g g j j j j j j j j j j j 1.8 c c c g g g g j j j j j j j j j j j 2.2 c c c g g g g j j j j j j j j j j j 2.7 c c c g g g g j j j j j j j j j j j 3.3 c c c g g g g j j j j j j j j j j j 3.9 c c c g g g g j j j j j j j j j j j 4.7 c c c g g g g j j j j j j j j j j j 5.6 c c c g g g g j j j j j j j j j j j 6.8 c c c g g g g j j j j j j j j j j j 8.2 c c c g g g g j j j j j j j j j j j 10 c c c g g g g j j j j j j j j j j j 12 c c c g g g g j j j j j j j j j j j 15 c c c g g g g j j j j j j j j j j j 18 c c c g g g g j j j j j j j j j j j 22 c c c g g g g j j j j j j j j j j j 27 c c c g g g g j j j j j j j j j j j 33 c c c g g g g j j j j j j j j j j j 39 c c c g g g g j j j j j j j j j j j 47 c c c g g g g j j j j j j j j j j j 56 c c c g g g g j j j j j j j j j j j 68 c c c g g g g j j j j j j j j j j j 82 c c c g g g g j j j j j j j j j j j 100 c c c g g g g j j j j j j j j j j j 120 c c c g g g g j j j j j j j j j j j 150 c c c g g g g j j j j j j j j j j j 180 c c c g g g g j j j j j j j j j j j 220 c c c g g g g j j j j j j j j j j m 270 c c c g g g g j j j j m j j j j j m 330 c c c g g g g j j j j m j j j j j m 390cccggg jj jjmjjj jjm 470cccggg jj jjmjjj jjm 560 g g g j j j j m j j j j j m 680 g g g j j j j j j j j j p 820 g g g j j j j j j j j m 1000 g g g j j j j j j j j q 1200 jj j jjj jq 1500 jj j jjjmq 1800 jj j jjmm 2200 jjn jjmp 2700 jjn jjmp 3300 jj jjmp 3900 jj jjmp 4700 jj jjmp 5600 jjm 6800 mm 8200 mm cap 0.010 mm (f) 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 wvdc 16 25 50 16 25 50 100 16 25 50 100 200 16 25 50 100 200 500 size ld02 ld03 ld05 ld06 l     w     t t
31 mlcc tin/lead termination ?b? capacitance range (np0 dielectric) preferred sizes are shaded size ld10 ld12 ld13 ld14 soldering reflow only reflow only reflow only reflow only packaging paper/embossed all embossed all embossed all embossed (l) length mm 3.20 0.20 4.50 0.30 4.50 0.30 5.72 0.25 (in.) (0.126 0.008) (0.177 0.012) (0.177 0.012) (0.225 0.010) (w) width mm 2.50 0.20 3.20 0.20 6.40 0.40 6.35 0.25 (in.) (0.098 0.008) (0.126 0.008) (0.252 0.016) (0.250 0.010) (t) terminal mm 0.50 0.25 0.61 0.36 0.61 0.36 0.64 0.39 (in.) (0.020 0.010) (0.024 0.014) (0.024 0.014) (0.025 0.015) wvdc 25 50 100 200 500 25 50 100 200 500 50 100 200 50 100 200 cap 0.5 (pf) 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 j 12 j 15 j 18 j 22 j 27 j 33 j 39 j 47 j 56 j 68 j 82 j 100 j 120 j 150 j 180 j 220 j 270 j 330 j 390 m 470 m 560 j j j j m 680 j j j j m 820 j j j j m 1000 j j j j m k k k k m m m m m m p 1200 j j j m m k k k k m m m m m m p 1500 j j j m m k k k k m m m m m m p 1800 j j j m k k k k m m m m m m p 2200 j j j q k k k k p m m m m m p 2700 j j j q k k k p q m m m m m p 3300 j j j k k k p q m m m m m p 3900 j j m k k k p q m m m m m p 4700 j j m k k k p q m m m m m p 5600 j j k k m p x m m m m m p 6800 j j k k m x m m m m m p 8200 j j k m m m m m m p cap 0.010 j j k m m m m m m p (f) 0.012 j j k m m m m m p 0.015 m m m m m m y 0.018 m m p m m m y 0.022 m m p m y y 0.027 m m p p y y 0.033 m m p p 0.039 m m p p 0.047 m m p p 0.068 m m p 0.082 m m q 0.1 q wvdc 25 50 100 200 500 25 50 100 200 500 50 100 200 50 100 200 size ld10 ld12 ld13 ld14 l     w     t t letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed
32 mlcc tin/lead termination ?b? capacitance range (x8r dielectric) letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed size ld03 ld05 ld06 wvdc 25v 50v 25v 50v 25v 50v 271 cap 270 g g 331 (pf) 330 g g j j 471 470 g g j j 681 680 g g j j 102 1000 g g j j j j 152 1500 g g j j j j 182 1800 g g j j j j 222 2200 g g j j j j 272 2700 g g j j j j 332 3300 g g j j j j 392 3900 g g j j j j 472 4700 g g j j j j 562 5600 g g j j j j 682 6800 g g j j j j 822 8200 g g j j j j 103 cap 0.01 g g j j j j 123 (f) 0.012 g g j j j j 153 0.015 g g j j j j 183 0.018 g g j j j j 223 0.022 g g j j j j 273 0.027 g g j j j j 333 0.033 g g j j j j 393 0.039 g g j j j j 473 0.047 g g j j j j 563 0.056 g n n m m 683 0.068 g n n m m 823 0.082 n n m m 104 0.1 n n m m 124 0.12 n n m m 154 0.15 n n m m 184 0.18 n m m 224 0.22 n m m 274 0.27 mm 334 0.33 mm 394 0.39 m 474 0.47 m 684 0.68 824 0.82 105 1 wvdc 25v 50v 25v 50v 25v 50v size ld03 ld05 ld06
33 preferred sizes are shaded size ld02 ld03 ld05 ld06 soldering reflow/wave reflow/wave reflow/wave reflow/wave packaging all paper all paper paper/embossed paper/embossed (l) length mm 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 (in.) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (w) width mm 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 (in.) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (t) terminal mm 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 (in.) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) wvdc 16 25 50 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 500 cap 100 (pf) 150 220 c 330 c g g g j j j j j j k 470 c g g g j j j j j j k 680 c g g g j j j j j j k 1000 c g g g j j j j j j k 1500 c g g j j j j j j j j j j j j m 2200 c g g j j j j j j j j j j j j m 3300 c c g g j j j j j j j j j j j j m 4700 c c g g j j j j j j j j j j j j m 6800 c c g g j j j j j j j j j j j j p cap 0.010 c g g j j j j j j j j j j j j p (f 0.015 c g g j j j j j j j j j j j m 0.022 c g g j j j j j n j j j j j m 0.033 g g j j j j n j j j j j m 0.047 g g g j j j j n j j j j j m 0.068 g g g j j j j n j j j j j p 0.10 c* g g g g j j j j n j j j j m p 0.15 g g j j j n n j j j j q 0.22 g g j j n n n j j j j q 0.33 nnnnn j j mp q 0.47 j* n n n n n m m m p q 0.68 nnn mm qq q 1.0 j* j* n n n* m m q q q 1.5 pq q 2.2 j* p* q q q 3.3 4.7 p* p* q* q* q* 10 p* q* q* 22 q* 47 100 wvdc 16 25 50 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 6.3 10 16 25 50 100 200 500 size ld02 ld03 ld05 ld06 letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed = under development mlcc tin/lead termination ?b? capacitance range (x7r dielectric)
34 mlcc tin/lead termination ?b? capacitance range (x7r dielectric) letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed preferred sizes are shaded size ld10 ld12 ld13 ld20 ld14 soldering reflow only reflow only reflow only reflow only reflow only packaging paper/embossed all embossed all embossed all embossed all embossed (l) length mm 3.20 0.20 4.50 0.30 4.50 0.30 5.70 0.40 5.72 0.25 (in.) (0.126 0.008) (0.177 0.012) (0.177 0.012) (0.225 0.016) (0.225 0.010) (w) width mm 2.50 0.20 3.20 0.20 6.40 0.40 5.00 0.40 6.35 0.25 (in.) (0.098 0.008) (0.126 0.008) (0.252 0.016) (0.197 0.016) (0.250 0.010) (t) terminal mm 0.50 0.25 0.61 0.36 0.61 0.36 0.64 0.39 0.64 0.39 (in.) (0.020 0.010) (0.024 0.014) (0.024 0.014) (0.025 0.015) (0.025 0.015) wvdc 10 16 25 50 100 200 500 50 100 200 500 50 100 25 50 100 200 50 100 cap 100 (pf) 150 220 330 470 680 1000 1500 jjjjjjm 2200 jjjjjjm 3300 jjjjjjm 4700 jjjjjjm 6800 jjjjjjm cap 0.010 jjjjjjm kkkkmm xxxmp (f 0.015 jjjjjjpkkkpmm xxxmp 0.022 jjjjjjqkkkpmm xxxmp 0.033 jjjjjjqkkkxmm xxxmp 0.047 jjjjjj kkkzmm xxxmp 0.068 jjjjjm kkkzmm xxxmp 0.10 jjjjjm kkkzmm xxxmp 0.15 jjjjmz kkp mm xxxmp 0.22 jjjjpz kkp mm xxxmp 0.33 jjjjq kmx mm xxxmp 0.47 mmmmq k p mm x x x m p 0.68 m m p x x m q m p x x m p 1.0nnpxzmxmpxxmp 1.5nnzzz zz m xx mx 2.2xxzzz zz xx m 3.3xxzz z xz 4.7xxzz z xz 10zzz z 22 z z z 47 100 wvdc 10 16 25 50 100 200 500 50 100 200 500 50 100 25 50 100 200 50 100 size ld10 ld12 ld13 ld20 ld14 l     w     t t
35 mlcc tin/lead termination ?b? capacitance range (x5r dielectric) preferred sizes are shaded size ld02 ld03 ld05 ld06 ld10 ld12 soldering reflow/wave reflow/wave reflow/wave reflow/wave reflow/wave packaging all paper all paper paper/embossed paper/embossed paper/embossed (l) length mm 1.00 0.10 1.60 0.15 2.01 0.20 3.20 0.20 3.20 0.20 (in.) (0.040 0.004) (0.063 0.006) (0.079 0.008) (0.126 0.008) (0.126 0.008) (w) width mm 0.50 0.10 0.81 0.15 1.25 0.20 1.60 0.20 2.50 0.20 (in.) (0.020 0.004) (0.032 0.006) (0.049 0.008) (0.063 0.008) (0.098 0.008) (t) terminal mm 0.25 0.15 0.35 0.15 0.50 0.25 0.50 0.25 0.50 0.25 (in.) (0.010 0.006) (0.014 0.006) (0.020 0.010) (0.020 0.010) (0.020 0.010) wvdc 4 6.3 10 16 25 50 4 6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 25 50 cap 100 (pf) 150 220 c 330 c 470 c 680 c 1000 c 1500 c 2200 c 3300 c 4700 c g 6800 c g cap 0.010 c g (f) 0.015 c g g g 0.022 c c g g g n 0.033 c g g g n 0.047 c c g g g n 0.068 c g g n 0.10 c c c g g n n 0.15 g n n 0.22 c* g g n n q 0.33 g g n 0.47 c* c* g n q q x 0.68 g n 1.0 c* c* c* g g g j* n n p* q q x x x 1.5 2.2 c* c* g* g* j* j* n n n q q z x 3.3 j* j* j* j* n n q q 4.7 e* j* j* j* n n n* n* q q q q q z 10 k* j* n* n* n* * q q q q* x z z z 22 p* * q* q* q* z z z z 47 q* z* 100 z* z* wvdc 4 6.3 10 16 25 50 4 6.3 10 16 25 35 50 6.3 10 16 25 35 50 6.3 10 16 25 35 50 4 6.3 10 16 25 35 50 6.3 10 25 50 size ld02 ld03 ld05 ld06 ld10 ld12 l     w     t t letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed = under development = *optional specifications ? contact factory note: contact factory for non-specified capacitance values
note: contact factory for availability of tolerance options for specific part numbers. 36 avx introduces the lt series comprising a range of low profile products in our x5r and x7r dielectric. x5r is a class ii dielectric with temperature varation of capacitance within 15% from ?55c to +85c. offerings include 0201, 0402, 0603, 0805 1206, and 1210 packages in compact, low profile designs. the lt series is ideal for decoupling and filtering applications where height clearance is limited. avx is also expanding the low profile products in our x7r dielectric. x7r is a class ii dielectric with temperature variation of capacitance within 15% from -55oc to +125oc. please contact the factory for availability of any additional values not listed. mlcc low profile general specifications part number (see page 2 for complete part number explanation) general description lt05 size lt01 - 0201 lt02 - 0402 lt03 - 0603 lt05 - 0805 lt06 - 1206 lt10 - 1210 z voltage 4v = 4 6.3v = 6 10v = z 16v = y 25v = 3 d dielectric x5r = d x7r = c 475 capacitance code (in pf) 2 sig. digits + number of zeros k capacitance tolerance k = 10% m = 20% a failure rate a = not applicable t terminations t = plated ni and sn 2 packaging 2 = 7" reel 4 = 13" reel 7 = bulk cass. 9 = bulk contact factory for multiples s special code see table below letter j z q c s x w max. 0.15 0.22 0.25 0.36 0.56 0.95 1.02 thickness (0.006) (0.009) (0.010) (0.014) (0.022) (0.038) (0.040) paper size lt01 lt02 lt03 lt05 lt06 lt10 wvdc 4 4 6.3 10 16 4 6.3 16 25 6.3 10 16 25 10 16 25 16 25 cap 104 0.10 z q s (f) 0.22 x 0.47 xx 105 1.0 c s s x x x 1.5 2.2 s s x x 4.7 sx sx www 106 10 x/w x x w w 22 47 wvdc 4 4 6.3 10 16 4 6.3 16 25 6.3 10 16 25 10 16 25 16 25 size lt01 lt02 lt03 lt05 lt06 lt10 embossed = x7r
37 ultrathin ceramic capacitors ut023d103mat2c the ultrathin (ut) series of ceramic capacitors is a new product offering from avx. the ut series was designed to meet the stringent thickness requirements of our customers. avx developed a new termination process (fct - fine copper termination) that provides unbeatable flatness and repeatability. the series includes products < 0.35mm in height and is targeted for applications such as smart cards, memory modules, high density sim cards, mobile phones, mp3 players, and embedded solutions. how to order ut style ultra thin 02 case size 0402 3 rated voltage 25v d temperature characteristic x5r 103 coded cap 0.01f m cap tolerance 20% a termination style commercial t termination 100% sn 2 packaging 7" reel = 15,000 pcs 13" reel = 50,000 pcs c thickness 0.30mm max lw tbl 1.00 0.10 0.50 0.10 0.25 0.05 0.25 0.10 (0.0390.004) (0.020 0.004) (0.010 0.002) (0.010 0.004) part dimensions mm (inches) performance characteristics recommended solder pad dimensions mm (inches) 0.50 (0.020) 0.50 (0.020) 0.60 (0.024) 1.70 (0.067) top view bl l end view side view wl bl t capacitance value 0.01f capacitance tolerance 20% dissipation factor range 3.0% operating temperature -55c to +85c temperature coefficient 15% rated voltage 25v insulation resistance at 25oc and rated voltage 100,000 mohms test frequency 1 vrms @ 1 khz %  capacitance 20 15 10 5 0 -5 -10 -15 -20 -80 -60 temperature coefficient temperature oc -40 -20 0 20 40 60 80 100
38 general description avx corporation has supported the automotive industry requirements for multilayer ceramic capacitors consistently for more than 10 years. products have been developed and tested specifically for automotive applications and all manufacturing facilities are qs9000 and vda 6.4 approved. as part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established pd/ag electrode system to a base metal electrode system (bme). avx is using aecq200 as the qualification vehicle for this transition. a detailed qualification package is available on request and contains results on a range of part numbers including: ? x7r dielectric components containing bme electrode and copper terminations with a ni/sn plated overcoat. ? x7r dielectric components, bme electrode with epoxy finish for conductive glue mounting. ? x7r dielectric components bme electrode and soft terminations with a ni/sn plated overcoat. ? np0 dielectric components containing pd/ag electrode and silver termina- tion with a ni/sn plated overcoat. automotive mlcc automotive how to order 0805 size 0402 0603 0805 1206 1210 1812 5 voltage 10v = z 16v = y 25v = 3 50v = 5 100v = 1 200v = 2 500v = 7 2 packaging 2 = 7" reel 4 = 13" reel a dielectric np0 = a x7r = c x8r = f 104 capacitance code (in pf) 2 significant digits + number of zeros e.g. 10f = 106 k capacitance tolerance f = 1% ( 10pf)* g = 2% ( 10pf)* j = 5% ( 1f) k = 10% m = 20% *npo only 4 failure rate 4 = automotive a special code a = std. product commercial automotive administrative standard part numbers. specific automotive part number. used to control no restriction on who purchases these parts. supply of product to automotive customers. design minimum ceramic thickness of 0.020" minimum ceramic thickness of 0.029" (0.74mm) on all x7r product. dicing side & end margins = 0.003" min side & end margins = 0.004" min cover layers = 0.005" min lot qualification as per eia rs469 increased sample plan ? (destructive physical stricter criteria. analysis - dpa) visual/cosmetic quality standard process and inspection 100% inspection application robustness standard sampling for accelerated increased sampling for accelerated wave solder on wave solder on x7r dielectrics x7r and np0 followed by lot by lot reliability testing. commercial vs automotive mlcc process comparison all tests have accept/reject criteria 0/1 t terminations t = plated ni and sn z = flexiterm ? ** u = conductive epoxy** **x7r & x8r only note: contact factory for non-specified capacitance values. 0402 case size available in t termination only. contact factory for availability of tolerance options for specific part numbers.
39 flexiterm ? features automotive mlcc np0/x7r dielectric a) bend test the capacitor is soldered to the pc board as shown: typical bend test results are shown below: style conventional term soft term 0603 >2mm >5 0805 >2mm >5 1206 >2mm >5 b) temperature cycle testing flexiterm ? has the ability to withstand at least 1000 cycles between ?55c and +125c 1mm/sec 90 mm electrode and termination options x7r dielectric np0 dielectric np0 ag/pd electrode nickel barrier termination pcb application figure 1 termination code t x7r dielectric pcb application figure 2 termination code t x7r nickel electrode soft termination pcb application figure 3 termination code z sn ni a g cu epoxy ni sn ni sn ni cu ni cu termination conductive epoxy ni conductive epoxy termination hybrid application figure 4 termination code u
40 automotive mlcc - np0 capacitance range 0603 0805 1206 1210 1812 25v 50v 100v 25v 50v 100v 25v 50v 100v 200v 500v 25v 50v 100v 200v 50v 100v 100 10pf g g g j j j j j j j j 120 12 g g g j j j j j j j j 150 15 g g g j j j j j j j j 180 18 g g g j j j j j j j 220 22 g g g j j j j j j j 270 27 g g g j j j j j j j 330 33 g g g j j j j j j j 390 39 g g g j j j j j j j 470 47 g g g j j j j j j j 510 51 g g g j j j j j j j 560 56 g g g j j j j j j j 680 68 g g g j j j j j j j 820 82 g g g j j j j j j j 101 100 g g g j j j j j j j 121 120 g g g j j j j j j j 151 150 g g g j j j j j j j 181 180 g g g j j j j j j j 221 220 g g g j j j j j j j 271 270 g g g j j j j j j j 331 330 g g g j j j j j j j 391 390 g g j j j j j j j 471 470 g g j j j j j j j 561 560 j j j j j j j 681 680 j j j j j j j 821 820 j j j j j j j 102 1000 j j j j j j j j j j j 122 1200 j j j j j j m m 152 1500 j m m m j j m m 182 1800 j m m m j j m m 222 2200 j m m m j j m m 272 2700 j m q j j m 332 3300 j m q j j p k k 392 3900 jj p k k 472 4700 jj p k k 103 10nf 25v 50v 100v 25v 50v 100v 25v 50v 100v 200v 500v 25v 50v 100v 200v 50v 100v 0603 0805 1206 1210 1812 letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed = under development
41 automotive mlcc - x7r capacitance range letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed 0402 0603 0805 1206 1210 1812 2220 16v 25v 50v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 500v 16v 25v 50v 100v 50v 100v 25v 50v 221 cap .22 271 (nf) .27 331 .33 391 .39 471 .47 561 .56 681 .68 821 .82 102 1 ggggg jjjjjjjjjjjkk kkkk 182 1.8 gggg jjjjjjjjjjjkk kkkk 222 2.2 gggg jjjjjjjjjjjkk kkkk 332 3.3 gggg jjjjjjjjjjjkk kkkk 472 4.7 gggg jjjjjjjjjjjkk kkkk 103 10 gggg jjjjjjjjjjjkk kkkk 123 12 ggg jjjm jjjjj kk kkkk 153 15 ggg jjjm jjjjj kk kkkk 183 18 ggg jjjm jjjjj kk kkkk 223 22 ggg jjjm jjjjj kk kkkk 273 27 ggg jjjm jjjjj kk kkkk 333 33 ggg jjjm jjjjj kk kkkk 473 47 ggg j j jm j j jmj kkkkkk 563 56 ggg jjjm jjjmj kkkmkk 683 68 ggg jjjm jjjmj kkkmkk 823 82 ggg jjjm jjjmj kkkmkk 104 100 g g g j j m m j j j m j k k k m k k 124 120 j j m j j m m k k k p k k 154 150 m n m j j m m k k k p k k 224 220 m n m j m m q m m m p m m 334 330 n n m j m p q p p p q x x 474 470 n n m m m p q p p p q x x 684 680 n n m q q q p p q x x x 105 cap 1 n n m q q q p q q x x x 155 (f) 1.5 qq pqzzxx 225 2.2 qq xzzzzz 335 3.3 xzz z 475 4.7 xzz z 106 10 z 226 22 z 16v 25v 50v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 500v 16v 25v 50v 100v 50v 100v 25v 50v 0402 0603 0805 1206 1210 1812 2220 = under development
42 automotive mlcc - x8r capacitance range letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed size 0603 0805 1206 wvdc 25v 50v 25v 50v 25v 50v 271 cap 270 g g 331 (pf) 330 g g j j 471 470 g g j j 681 680 g g j j 102 1000 g g j j j j 152 1500 g g j j j j 182 1800 g g j j j j 222 2200 g g j j j j 272 2700 g g j j j j 332 3300 g g j j j j 392 3900 g g j j j j 472 4700 g g j j j j 562 5600 g g j j j j 682 6800 g g j j j j 822 8200 g g j j j j 103 cap 0.01 g g j j j j 123 (f) 0.012 g g j j j j 153 0.015 g g j j j j 183 0.018 g g j j j j 223 0.022 g g j j j j 273 0.027 g g j j j j 333 0.033 g g j j j j 393 0.039 g g j j j j 473 0.047 g g j j j j 563 0.056 g n n m m 683 0.068 g n n m m 823 0.082 n n m m 104 0.1 n n m m 124 0.12 n n m m 154 0.15 n n m m 184 0.18 n m m 224 0.22 n m m 274 0.27 mm 334 0.33 mm 394 0.39 m 474 0.47 m 684 0.68 824 0.82 105 1 wvdc 25v 50v 25v 50v 25v 50v size 0603 0805 1206 = aec-q200 qualified
43 aps series aps for cots+ applications general description as part of our continuing support to high reliability customers, avx has launched an automotive plus series of parts (aps) qualified and manufactured in accordance with automotive aec-q200 standard. each production batch is qual- ity tested to an enhanced requirement and shipped with a certificate of conformance. on a quarterly basis a reliability package is issued to all aps customers. a detailed qualification package is available on request and contains results on a range of part numbers including: ? x7r dielectric components containing bme electrode and copper terminations with a ni/sn plated overcoat. ? x7r dielectric components bme electrode and soft terminations with a ni/sn plated overcoat (flexiterm ? ). ? x7r for hybrid applications. ? np0 dielectric components containing pd/ag electrode and silver termination with a ni/sn plated overcoat. we are also able to support customers who require an aec-q200 grade component finished with tin/lead. how to order ap03 size ap03=0603 ap05=0805 ap06=1206 ap10=1210 ap12=1812 5 voltage 16v = y 25v = 3 50v = 5 100v = 1 200v = 2 500v = 7 2 packaging 2 = 7" reel 4 = 13" reel a dielectric np0 = a x7r = c 104 capacitance code (in pf) 2 significant digits + number of zeros e.g. 10f = 106 k capacitance tolerance j = 5% k = 10% m = 20% q failure rate q = aps a special code a = std. product t terminations t = plated ni and sn** z = flexiterm ? ** u = conductive epoxy** b = 5% min lead x = flexiterm ? with 5% min lead z, u, x for x7r only **rohs compliant note: contact factory for availability of termination and tolerance options for specific part numbers.
44 np0 automotive plus series / aps capacitance range aec-q200 qualified ts 16949, iso 9001 certified 0603 0805 1206 1210 1812 25v 50v 100v 25v 50v 100v 25v 50v 100v 200v 500v 25v 50v 100v 200v 50v 100v 100 10pf g g g j j j j j j j j 120 12 g g g j j j j j j j j 150 15 g g g j j j j j j j j 180 18 g g g j j j j j j j 220 22 g g g j j j j j j j 270 27 g g g j j j j j j j 330 33 g g g j j j j j j j 390 39 g g g j j j j j j j 470 47 g g g j j j j j j j 510 51 g g g j j j j j j j 560 56 g g g j j j j j j j 680 68 g g g j j j j j j j 820 82 g g g j j j j j j j 101 100 g g g j j j j j j j 121 120 g g g j j j j j j j 151 150 g g g j j j j j j j 181 180 g g g j j j j j j j 221 220 g g g j j j j j j j 271 270 g g g j j j j j j j 331 330 g g g j j j j j j j 391 390 g g j j j j j j j 471 470 g g j j j j j j j 561 560 j j j j j j j 681 680 j j j j j j j 821 820 j j j j j j j 102 1000 j j j j j j j j j j j 122 1200 j j j j j m m 152 1500 j m m j j m m 182 1800 j m m j j m m 222 2200 j m m j j m m 272 2700 j m q j j m 332 3300 j m q j j p k k 392 3900 jj p k k 472 4700 jj p k k 103 10nf 25v 50v 100v 25v 50v 100v 25v 50v 100v 200v 500v 25v 50v 100v 200v 50v 100v 0603 0805 1206 1210 1812 letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed
45 x7r automotive plus series / aps capacitance range aec-q200 qualified ts 16949, iso 9001 certified letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed = under development 0603 0805 1206 1210 1812 2220 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 500v 16v 25v 50v 100v 50v 100v 25v 50v 102 cap 1 ggggg jjjjjjjjjjj kkkkkk 182 (nf) 1.8 gggg jjjjjjjjjjj kkkkkk 222 2.2gggg jjjjjjjjjjj kkkkkk 332 3.3gggg jjjjjjjjjjj kkkkkk 472 4.7gggg jjjjjjjjjjj kkkkkk 103 10gggg jjjjjjjjjjj kkkkkk 123 12ggg j j jm j j j j j kkkkkk 153 15ggg j j jm j j j j j kkkkkk 183 18ggg j j jm j j j j j kkkkkk 223 22ggg j j jm j j j j j kkkkkk 273 27ggg j j jm j j j j j kkkkkk 333 33ggg j j jm j j j j j kkkkkk 473 47ggg j j jm j j jmj kkkkkk 563 56ggg jjjm jjjmj kkkmkk 683 68ggg jjjm jjjmj kkkmkk 823 82ggg jjjm jjjmj kkkmkk 104 100 g g g j j m m j j j m j k k k m k k 124 120 j j m j j m m k k k p k k 154 150 m n m j j m m k k k p k k 224 220 m n m j m m q m m m p m m 334 330 n n m j m p q p p p q x x 474 470 n n m m m p q p p p q x x 684 680 n n m q q q p p q x x x 105 cap 1 n n m q q q p q q x x x 155(f)1.5 qq pqzzxx 225 2.2 qq xzzzzz 335 3.3 xzz z 475 4.7 xzz z 106 10 z 226 22 z 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 500v 16v 25v 50v 100v 50v 100v 25v 50v 0603 0805 1206 1210 1812 2220
46 general description with increased requirements from the automotive industry for additional component robustness, avx recognized the need to produce a mlcc with enhanced mechanical strength. it was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications. to satisfy the requirement for enhanced mechanical strength, avx had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. it was found that the structure of the termination needed to be flexible and after much research and development, avx launched flexiterm ? . flexiterm ? is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an x7r dielectric. the industry standard for flexure is 2mm minimum. using flexiterm ? , avx provides up to 5mm of flexure without internal cracks. beyond 5mm, the capacitor will generally fail ?open?. as well as for automotive applications flexiterm ? will provide design engineers with a satisfactory solution when designing pcb?s which may be subject to high levels of board flexure. mlcc with flexiterm ? general specifications applications high flexure stress circuit boards ? e.g. depanelization: components near edges of board. variable temperature applications ? soft termination offers improved reliability per- formance in applications where there is tem- perature variation. ? e.g. all kind of engine sensors: direct connection to battery rail. automotive applications ? improved reliability. ? excellent mechanical performance and thermo mechanical performance. product advantages ? high mechanical performance able to withstand, 5mm bend test guaranteed. ? increased temperature cycling performance, 3000 cycles and beyond. ? flexible termination system. ? reduction in circuit board flex failures. ? base metal electrode system. ? automotive or commercial grade products available. how to order 0805 style 0603 0805 1206 1210 1812 2220 5 voltage 6 = 6.3v z = 10v y = 16v 3 = 25v 5 = 50v 1 = 100v 2 = 200v 2 packaging 2 = 7" reel 4 = 13" reel c dielectric c = x7r f = x8r 104 capacitance code (in pf) 2 sig digits + number of zeros e.g., 104 = 100nf k capacitance tolerance j = 5%* k = 10% m = 20% * 1f only a special code a = std. product z terminations z = flexiterm ? for flexiterm ? with tin/lead termination see avx ld series a failure rate a=commercial 4 = automotive note: contact factory for availability of tolerance options for specific part numbers.
47 mlcc with flexiterm ? specifications and test methods performance testing board bend test procedure according to aec-q200 bend testplate control panel connector digital caliper mounting assembly loading knife control panel board bend test results aec-q200 vrs avx flexiterm ? bend test 12 0603 10 8 6 4 2 0 npo x7r x7r soft term 12 1206 substrate bend (mm) substrate bend (mm) substrate bend (mm) substrate bend (mm) 10 8 6 4 2 0 npo x7r x7r soft term 12 0805 10 8 6 4 2 0 npo x7r x7r soft term 12 1210 10 8 6 4 2 0 npo x7r x7r soft term temperature cycle test procedure 1 hour 12mins +125 0 c +25 0 c -55 0 c avx enhanced soft termination bend test procedure bend test the capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second: typical bend test results are shown below: style conventional termination flexiterm ? 0603 >2mm >5mm 0805 >2mm >5mm 1206 >2mm >5mm aec-q200 qualification: ? created by the automotive electronics council ? specification defining stress test qualification for passive components testing: key tests used to compare soft termination to aec-q200 qualification: ? bend test ? temperature cycle test test procedure as per aec-q200: the test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures. ? sample lot size quantity 77 pieces ? tc chamber cycle from -55oc to +125oc for 1000 cycles ? interim electrical measurements at 250, 500, 1000 cycles ? measure parameter capacitance dissipation factor, insulation resistance test procedure as per aec-q200: sample size: 20 components span: 90mm minimum deflection spec: 2 mm ? components soldered onto fr4 pcb (figure 1) ? board connected electrically to the test equipment (figure 2) fig 1 - pcb layout with electrical connections fig 2 - board bend test equipment test temperature profile (1 cycle) table summary ? the board is placed on 2 supports 90mm apart (capacitor side down) ? the row of capacitors is aligned with the load stressing knife ? the load is applied and the deflection where the part starts to crack is recorded (note: equipment detects the start of the crack using a highly sensitive current detection circuit) ? the maximum deflection capability is 10mm max. = 10mm max. = 10mm 90mm
48 % failure 10 8 6 4 2 0 0 500 1000 1500 0603 2000 2500 3000 % failure 10 8 6 4 2 0 0 500 1000 1500 1206 2000 2500 3000 % failure 10 8 6 4 2 0 0 500 1000 1500 0805 2000 2500 3000 % failure 10 8 6 4 2 0 0 500 1000 1500 1210 2000 soft term - no defects up to 3000 cycles 2500 3000 beyond 1000 cycles: temperature cycle test results aec-q200 specification states 1000 cycles compared to avx 3000 temperature cycles. mlcc with flexiterm ? specifications and test methods flexiterm ? test summary without soft termination with soft termination major fear is of latent board flex failures. far superior mechanical performance. generally open failure mode beyond 5mm flexure. ? qualified to aec-q200 test/specification with the exception of using avx 3000 temperature cycles (up to +150c bend test guaranteed greater than 5mm). ? flexiterm ? provides improved performance compared to standard termination systems. ? board bend test improvement by a factor of 2 to 4 times. ? temperature cycling: ? 0% failure up to 3000 cycles ? no esr change up to 3000 cycles
49 mlcc with flexiterm ? x8r dielectric capacitance range letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed size 0603 0805 1206 wvdc 25v 50v 25v 50v 25v 50v 271 cap 270 g g 331 (pf) 330 g g j j 471 470 g g j j 681 680 g g j j 102 1000 g g j j j j 152 1500 g g j j j j 182 1800 g g j j j j 222 2200 g g j j j j 272 2700 g g j j j j 332 3300 g g j j j j 392 3900 g g j j j j 472 4700 g g j j j j 562 5600 g g j j j j 682 6800 g g j j j j 822 8200 g g j j j j 103 cap 0.01 g g j j j j 123 (f) 0.012 g g j j j j 153 0.015 g g j j j j 183 0.018 g g j j j j 223 0.022 g g j j j j 273 0.027 g g j j j j 333 0.033 g g j j j j 393 0.039 g g j j j j 473 0.047 g g j j j j 563 0.056 g n n m m 683 0.068 g n n m m 823 0.082 n n m m 104 0.1 n n m m 124 0.12 n n m m 154 0.15 n n m m 184 0.18 n m m 224 0.22 n m m 274 0.27 mm 334 0.33 mm 394 0.39 m 474 0.47 m 684 0.68 824 0.82 105 1 wvdc 25v 50v 25v 50v 25v 50v size 0603 0805 1206 = aec-q200 qualified
50 mlcc with flexiterm ? x7r dielectric capacitance range 0603 0805 1206 1210 1812 2220 16v 25v 50v 100v 200v 10v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 16v 25v 50v 100v 16v 25v 50v 100v 25v 50v 100v 101 121 151 181 221 271 j j j j j j 331jjjjjjjjjjj 391jjjjjjjjjjj 471jjjjjjjjjjj 561jjjjjjjjjjj 681jjjjjjjjjjj 821jjjjjjjjjjj 102jjjjjjjjjjjjjjjj 122jjjj jjjjjjjjjjj 152jjjj jjjjjjjjjjj 182jjjj jjjjjjjjjjj 222jjjj jjjjjjjjjjj 272jjjj jjjjjjjjjjj 332jjjj jjjjjjjjjjj 392jjjj jjjjjjjjjjj 472jjjj jjjjjjjjjjj 562jjjj jjjjjjjjjjj 682jjjj jjjjjjjjjjj 822jjjj jjjjjjjjjjj 103jjjj jjjjjjjjjjj 123jjj jjjjm jjjjj 153jjj jjjjm jjjjj 183jjj jjjjm jjjjj 223jjj jjjjm jjjjj k 273jjj jjjjm jjjjj k 333 j j j j j j j m j j j j j k 393jjj jjjjm jjjmj k 473jjj jjjjm jjjmj k 563jjj jjjjn jjjmjkkkmkkkk 683jjj jjjjn jjjmjkkkmkkkk 823jjj jjjjn jjjpjkkkmkkkk 104jjj jjjjn jjjqjkkkpkkkkxxx 124 j j j n n j j p q k k k q k k k k 154 mmnn n j jp q kkk qk kkmx xx 184 m m n n n j m p q m m m q k k k m 224 m m n n n j m p q m m m q m m m x x x x 274 n n n n n j m p q p p p q m m m x 334 n n n n n j m p q p p p q m m m x x x x 394 n n n n n m m p q p p p q x x x x 474 n n n n n m m p q p p p q x x x x x x x 564 n n n m q q q p q q q x x x z 684 n n n m q q q p x x x x x x z x x x 824 n n n m q q q p z z z x x x z 105 n n n m q q q p z z z x x x z x x x 155 qq pzz z zzx xx 185 qq zzzz zz 225 qq zzzz zzx xx 335 zzz z z 475 zzz z z 106 zz 226 z 16v 25v 50v 100v 200v 10v 16v 25v 50v 100v 200v 16v 25v 50v 100v 200v 16v 25v 50v 100v 16v 25v 50v 100v 25v 50v 100v 0603 0805 1206 1210 1812 2220 letter a c e g j k m n p q x y z max. 0.33 0.56 0.71 0.90 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79 thickness (0.013) (0.022) (0.028) (0.035) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110) paper embossed
51 flexisafe mlc chips for ultra safety critical applications avx have developed a range of components specifically for safety critical applications. utilizing the award-winning flexiterm? layer in conjunction with the cascade design previously used for high voltage mlccs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features. the flexiterm? layer protects the component from any damage to the ceramic resulting from mechanical stress during pcb assembly or use with end customers. board flexure type mechanical damage accounts for the majority of mlcc failures. the addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike esd damage and placement damage. with the inclusion of the cascade design structure to complement the flexiterm? layer, the flexisafe range of capacitors has unbeatable safety features. fs03 size fs03 = 0603 fs05 = 0805 fs06 = 1206 fs10 = 1210 5 voltage 16v = y 25v = 3 50v = 5 100v = 1 c dielectric x7r = c 104 capacitance code (in pf) 2 sig. digits + number of zeros e.g. 10f =106 k capacitance tolerance j = 5% k = 10% m = 20% how to order q failure rate a = commercial 4 = automotive q = aps z terminations z = flexiterm tm x = flexiterm tm with 5% min lead 2 packaging 2 = 7" reel 4 = 13" reel a special code a = std. product flexisafe x7r range capacitance 0603 0805 1206 1210 code nf 16 25 50 100 16 25 50 16 25 50 16 25 50 102 1 182 1.8 222 2.2 332 3.3 472 4.7 103 10 123 12 153 15 183 18 223 22 273 27 333 33 473 47 563 56 683 68 823 82 104 100 124 120 154 150 224 220 334 330 474 470 qualified in qualification
52 capacitor array capacitor array (ipc) avx capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements. reduced costs placement costs are greatly reduced by effectively placing one device instead of four or two. this results in increased throughput and translates into savings on machine time. inventory levels are lowered and further savings are made on solder materials, etc. space saving space savings can be quite dramatic when compared to the use of discrete chip capacitors. as an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (this calculation is dependent on the spacing of the discrete components.) increased throughput assuming that there are 220 passive components placed in a mobile phone: a reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%. a reduction of 40 placements increases throughput by 18%. for high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of place- ment machines required to mount components: if 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine. during a 20hr operational day a machine places 720k components. over a working year of 167 days the machine can place approximately 120 million. if 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine. smaller volume users can also benefit from replacing discrete components with arrays. the total number of place- ments is reduced thus creating spare capacity on placement machines. this in turn generates the opportunity to increase overall production output without further investment in new equipment. w2a (0508) capacitor arrays the 0508 4-element capacitor array gives a pcb space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors. w3a (0612) capacitor arrays the 0612 4-element capacitor array gives a pcb space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors. area = 7.0mm 2 (0.276 in 2 ) area = 3.95mm 2 (0.156 in 2 ) 5.0 (0.197) 1.4 (0.055) 1.0 (0.039) 2.1 (0.083) 1.88 (0.074) 4 pcs 0402 capacitors = 1 pc 0508 array area = 13.8mm 2 (0.543 in 2 ) area = 6.4mm 2 (0.252 in 2 ) 6.0 (0.236) 2.3 (0.091) 1.5 (0.059) 3.2 (0.126) 2.0 (0.079) 4 pcs 0603 capacitors = 1 pc 0612 array benefits of using capacitor arrays
53 capacitor array capacitor array (ipc) general description avx is the market leader in the development and manufacture of capacitor arrays. the smallest array option available from avx, the 0405 2-element device, has been an enormous success in the telecommunications market. the array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace. avx capacitor arrays are available in x5r, x7r and np0 (c0g) ceramic dielectrics to cover a broad range of capacitance values. voltage ratings from 6.3 volts up to 100 volts are offered. avx also now offers a range of automotive capacitor arrays qualified to aec-q200 (see separate table). key markets for capacitor arrays are mobile and cordless phones, digital set top boxes, computer motherboards and peripherals as well as automotive applications, rf modems, networking products, etc. how to order w style w = rohs l = snpb 2 case size 1 = 0405 2 = 0508 3 = 0612 5 = 0306 a array 4 number of caps 3 voltage 6 = 6v z = 10v y = 16v 3 = 25v 5 = 50v 1 = 100v c dielectric a = np0 c = x7r d = x5r 103 capacitance code 2 sig digits + number of zeros m capacitance tolerance j = 5% k = 10% m = 20% 2a packaging & quantity code 2a = 7" reel (4000) 4a = 13" reel (10000) 2f = 7" reel (1000) a failure rate a = commercial 4 = automotive t termination code t = plated ni and sn** z = flexiterm ? ** b = 5% min lead x = flexiterm ? with 5% min lead 0405 - 2 element 0508 - 2 element 0508 - 4 element 0612 - 4 element avx capacitor array - w2a41a***k s21 magnitude -40 -35 -30 -25 -20 -15 -10 -5 0 0.01 0.1 1 10 frequency (ghz) s21 mag. (db) 5pf 10pf 15pf 22pf 33pf 39pf 68pf note: contact factory for availability of termination and tolerance options for specific part numbers. **rohs compliant
54 size 0405 0508 0508 0612 # elements 2 2 4 4 soldering reflow only reflow/wave reflow/wave reflow/wave packaging all paper all paper paper/embossed paper/embossed length mm 1.00 0.15 1.30 0.15 1.30 0.15 1.60 0.150 (in.) (0.039 0.006) (0.051 0.006) (0.051 0.006) (0.063 0.006) width mm 1.37 0.15 2.10 0.15 2.10 0.15 3.20 0.20 (in.) (0.054 0.006) (0.083 0.006) (0.083 0.006) (0.126 0.008) max. mm 0.66 0.94 0.94 1.35 thickness (in.) (0.026) (0.037) (0.037) (0.053) wvdc 16 25 50 16 25 50 100 16 25 50 100 16 25 50 100 1r0 cap 1.0 1r2 (pf) 1.2 1r5 1.5 1r8 1.8 2r2 2.2 2r7 2.7 3r3 3.3 3r9 3.9 4r7 4.7 5r6 5.6 6r8 6.8 8r2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 capacitor array capacitance range ? np0/c0g
55 size 0306 04050508 05080612 # elements 4 2 2 4 4 soldering reflow only reflow only reflow/wave reflow/wave reflow/wave packaging all paper all paper all paper paper/embossed paper/embossed length mm 1.60 0.15 1.00 0.15 1.30 0.15 1.30 0.15 1.60 0.150 (in.) (0.063 0.006) (0.039 0.006) (0.051 0.006) (0.051 0.006) (0.063 0.006) width mm 0.81 0.15 1.37 0.15 2.10 0.15 2.10 0.15 3.20 0.20 (in.) (0.032 0.006) (0.054 0.006) (0.083 0.006) (0.083 0.006) (0.126 0.008) max. mm 0.50 0.66 0.94 0.94 1.35 thickness (in.) (0.020) (0.026) (0.037) (0.037) (0.053) wvdc 6 10 16 25 6 10 16 25 50 6 10 16 25 50 100 6 10 16 25 50 100 6 10 16 25 50 100 101 cap 100 121 (f) 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 103 cap 0.010 123 (f) 0.012 153 0.015 183 0.018 223 0.022 273 0.027 333 0.033 393 0.039 473 0.047 563 0.056 683 0.068 823 0.082 104 0.10 124 0.12 154 0.15 184 0.18 224 0.22 274 0.27 334 0.33 474 0.47 564 0.56 684 0.68 824 0.82 105 1.0 125 1.2 155 1.5 185 1.8 225 2.2 335 3.3 475 4.7 106 10 226 22 476 47 107 100 capacitor array capacitance range ? x7r/x5r = currently available x7r = currently available x5r = under development x7r, contact factory for advance samples = under development x5r, contact factory for advance samples
56 automotive capacitor array (ipc) 0508 - 4 element 0612 - 4 element as the market leader in the development and manufacture of capacitor arrays avx is pleased to offer a range of aec-q200 qualified arrays to compliment our product offering to the automotive industry. both the avx 0612 and 0508 4-element capacitor array styles are qualified to the aec-q200 automotive specifications. aec-q200 is the automotive industry qualification standard and a detailed qualification package is available on request. all avx automotive capacitor array production facilities are certified to iso/ts 16949:2002. *contact factory for availability by part number for k = 10% and j = 5% tolerance. how to order w style w = rohs l = snpb 3 case size 1 = 0405 2 = 0508 3 = 0612 a array 4 number of caps y voltage z = 10v y = 16v 3 = 25v 5 = 50v 1 = 100v c dielectric a = np0 c = x7r f = x8r 104 capacitance code (in pf) significant digits + number of zeros e.g. 10f=106 k capacitance tolerance *j = 5% *k = 10% m = 20% 4 failure rate 4 = automotive 2a packaging & quantity code 2a = 7" reel (4000) 4a = 13" reel (10000) 2f = 7" reel (1000) **rohs compliant t terminations t = plated ni and sn** z = flexiterm ? ** b = 5% min lead x = flexiterm ? with 5% min lead size 0508 0508 0612 0405 no. of elements 2442 wvdc 10 16 25 50 100 16 25 50 100 10 16 25 50 100 16 101 cap 100 121 (pf) 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 103 cap 0.010 123 (f) 0.012 153 0.015 183 0.018 223 0.022 273 0.027 333 0.033 393 0.039 473 0.047 563 0.056 683 0.068 823 0.082 104 0.10 124 0.12 154 0.15 224 0.22 size 0405 0508 0508 0612 no. of elements 2 24 4 wvdc 50 50 16 25 50 100 16 25 50 100 1r0 cap 1.0 1r2 (pf) 1.2 1r5 1.5 1r8 1.8 2r2 2.2 2r7 2.7 3r3 3.3 3r9 3.9 4r7 4.7 5r6 5.6 6r8 6.8 8r2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600 682 6800 822 8200 x7r x8r np0/c0g = x7r = under development = x8r = under development = npo/cog
57 capacitor array multi-value capacitor array (ipc) general description a recent addition to the array product range is the multi- value capacitor array. these devices combine two different capacitance values in standard ?cap array? packages and are available with a maximum ratio between the two capacitance values of 100:1. the multi-value array is currently available in the 0405 and 0508 2-element styles and also in the 0612 4-element style. whereas to date avx capacitor arrays have been suited to applications where multiple capacitors of the same value are used, the multi-value array introduces a new flexibility to the range. the multi-value array can replace discrete capacitors of different values and can be used for broadband decoupling applications. the 0508 x 2 element multi-value array would be particularly recommended in this application. another application is filtering the 900/1800 or 1900mhz noise in mobile phones. the 0405 2-element, low capacitance value np0, (c0g) device would be suited to this application, in view of the space saving requirements of mobile phone manufacturers. advantages of the multi-value capacitor arrays enhanced performance due to reduced parasitic inductance when connected in parallel, not only do discrete capacitors of different values give the desired self-resonance, but an additional unwanted parallel resonance also results. this parallel resonance is induced between each capacitor?s self- resonant frequencies and produces a peak in impedance response. for decoupling and bypassing applications this peak will result in a frequency band of reduced decoupling and in filtering applications reduced attenuation. the multi-value capacitor array, combining capacitors in one unit, virtually eliminates the problematic parallel resonance, by minimizing parasitic inductance between the capacitors, thus enhancing the broadband decoupling/filtering performance of the part. reduced esr an advantage of connecting two capacitors in parallel is a significant reduction in esr. however, as stated above, using discrete components brings with it the unwanted side effect of parallel resonance. the multi-value cap array is an excellent alternative as not only does it perform the same function as parallel capacitors but also it reduces the uncertainty of the frequency response. 100 10 1 1000 frequency (mhz) 0 0.2 0.4 0.6 0.8 1 impedance (ohms) 2xdiscrete caps (0603) multi value cap (0508) cap (min/max) np0 x5r/x7r 0612 4-element 100/471 221/104 0508 2-element 100/471 221/104 0405 2-element 100/101 101/103 ? max. ratio between the two cap values is 1:100. ? the voltage of the higher capacitance value dictates the voltage of the multi-value part. ? only combinations of values within a specific dielectric range are possible. impedance vs frequency w style 2 case size 1 = 0405 2 = 0508 3 = 0612 a array 2 number of caps a failure rate y voltage z = 10v y = 16v 3 = 25v 5 = 50v 1 = 100v c dielectric a = np0 c = x7r d = x5r 102m 1st value capacitance code (in pf) 2 sig. digits + no. of zeros 104m 2nd value capacitance tolerance k = 10% m = 20% 2a packaging & quantity code 2a = 7" reel (4000) 4a = 13" reel (10000) 2f = 7" reel (1000) how to order (multi-value capacitor array - ipc) note: contact factory for availability of termination and tolerance options for specific part numbers. **rohs compliant t terminations t = plated ni and sn** z = flexiterm ? ** b = 5% min lead x = flexiterm ? with 5% min lead
58 capacitor array pad layout dimensions lwtbwblps 1.00 0.15 1.37 0.15 0.66 max 0.36 0.10 0.20 0.10 0.64 ref 0.32 0.10 (0.039 0.006) (0.054 0.006) (0.026 max) (0.014 0.004) (0.008 0.004 ) (0.025 ref) (0.013 0.004) abcde 0.46 0.74 1.20 0.30 0.64 (0.018) (0.029) (0.047) (0.012) (0.025) 0405 - 2 element lwtbwblps 1.30 0.15 2.10 0.15 0.94 max 0.43 0.10 0.33 0.08 1.00 ref 0.50 0.10 (0.051 0.006) (0.083 0.006) (0.037 max) (0.017 0.004) (0.013 0.003 ) (0.039 ref) (0.020 0.004) abcde 0.68 1.32 2.00 0.46 1.00 (0.027) (0.052) (0.079) (0.018) (0.039) 0508 - 2 element lwtbwblpxs 1.30 0.15 2.10 0.15 0.94 max 0.25 0.06 0.20 0.08 0.50 ref 0.75 0.10 0.25 0.10 (0.051 0.006) (0.083 0.006) (0.037 max) (0.010 0.003) (0.008 0.003 ) (0.020 ref) (0.030 0.004) (0.010 0.004) abcde 0.56 1.32 1.88 0.30 0.50 (0.022) (0.052) (0.074) (0.012) (0.020) 0508 - 4 element lwtbwblpxs 1.60 0.20 3.20 0.20 1.35 max 0.41 0.10 0.18 0.76 ref 1.14 0.10 0.38 0.10 (0.063 0.008) (0.126 0.008) (0.053 max) (0.016 0.004) (0.007 ) (0.030 ref) (0.045 0.004) (0.015 0.004) abcde 0.89 1.65 2.54 0.46 0.76 (0.035) (0.065) (0.100) (0.018) (0.030) 0612 - 4 element 0405 - 2 element 0508 - 2 element 0508 - 4 element 0612 - 4 element part dimensions a b c d e l bl bw c/l of chip c l t w p s s 0405 - 2 element pad layout a b c d e l bl bw c/l of chip c l t w p s s 0508 - 2 element pad layout 0508 - 4 element pad layout a b c d e l bl bw c/l of chip c l t w x x p s s 0612 - 4 element pad layout a b c d e l bl bw c/l of chip c l t w x x p s s part & pad layout dimensions millimeters (inches) +0.25 -0.08 +0.010 -0.003
59 low inductance capacitors introduction the signal integrity characteristics of a power delivery network (pdn) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. these power system challenges are coming from mainstream designs with operating frequencies of 300mhz or greater, modest ics with power demand of 15 watts or more, and operating voltages below 3 volts. the classic pdn topology is comprised of a series of capacitor stages. figure 1 is an example of this architecture with multiple capacitor stages. an ideal capacitor can transfer all its stored energy to a load instantly. a real capacitor has parasitics that prevent instantaneous transfer of a capacitor?s stored energy. the true nature of a capacitor can be modeled as an rlc equivalent circuit. for most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. the rlc values in this model are commonly referred to as equivalent series capacitance (esc), equivalent series resistance (esr), and equivalent series inductance (esl). the esl of a capacitor determines the speed of energy transfer to a load. the lower the esl of a capacitor, the faster that energy can be transferred to a load. historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). low esl devices typically have low capacitance. likewise, higher capacitance devices typically have higher esls. this tradeoff between esl (speed of energy delivery) and capacitance (energy storage) drives the pdn design topology that places the fastest low esl capacitors as close to the load as possible. low inductance mlccs are found on semiconductor packages and on boards as close as possible to the load. low inductance chip capacitors the key physical characteristic determining equivalent series inductance (esl) of a capacitor is the size of the current loop it creates. the smaller the current loop, the lower the esl. a standard surface mount mlcc is rectangular in shape with electrical terminations on its shorter sides. a low inductance chip capacitor (licc) sometimes referred to as reverse geometry capacitor (rgc) has its terminations on the longer side of its rectangular shape. when the distance between terminations is reduced, the size of the current loop is reduced. since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower esl then an 0603. the reduction in esl varies by eia size, however, esl is typically reduced 60% or more with an licc versus a standard mlcc. interdigitated capacitors the size of a current loop has the greatest impact on the esl characteristics of a surface mount capacitor. there is a secondary method for decreasing the esl of a capacitor. this secondary method uses adjacent opposing current loops to reduce esl. the interdigitated capacitor (idc) utilizes both primary and secondary methods of reducing inductance. the idc architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops. an idc is one single capacitor with an internal structure that has been optimized for low esl. similar to standard mlcc versus liccs, the reduction in esl varies by eia case size. typically, for the same eia size, an idc delivers an esl that is at least 80% lower than an mlcc. vr slowest capacitors fastest capacitors low inductance decoupling capacitors semiconductor product bulk board-level package-level die-level figure 1 classic power delivery network (pdn) architecture
60 low inductance capacitors introduction land grid array (lga) capacitors land grid array (lga) capacitors are based on the first low esl mlcc technology created to specifically address the design needs of current day power delivery networks (pdns). this is the 3rd low inductance capacitor technology developed by avx. lga technology provides engineers with new options. the lga internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance. the first family of lga products are 2 terminal devices. a 2 terminal 0306 lga delivers esl performance that is equal to or better than an 0306 8 terminal idc. the 2 terminal 0805 lga delivers esl performance that approaches the 0508 8 terminal idc. new designs that would have used 8 terminal idcs are moving to 2 terminal lgas because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal lga versus an 8 terminal idc. lga technology is also used in a 4 terminal family of products that avx is sampling and will formerly introduce in 2008. beyond 2008, there are new multi-terminal lga product families that will provide even more attractive options for pdn designers. low inductance chip arrays (lica ? ) the lica ? product family is the result of a joint development effort between avx and ibm to develop a high performance mlcc family of decoupling capacitors. lica was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications. lica ? products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. the c4 solder ball termination option is the perfect compliment to flip-chip packaging technology. mainframe class cpus, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9?s use lica ? . lica ? products with either sn/pb or pb-free solder balls are used for decoupling in high reliability military and aerospace applications. these lica ? devices are used for decoupling of large pin count fpgas, asics, cpus, and other high power ics with low operating voltages. when high reliability decoupling applications require the very lowest esl capacitors, lica ? products are the best option. figure 2 mlcc, licc, idc, and lga technologies deliver different levels of equivalent series inductance (esl). 470 nf 0306 impedance comparison 0.001 0.01 0.1 1 1 10 100 1000 frequency (mhz) impedance (ohms) 0306 2t-lga 0306 licc 0306 8t-idc 0603 mlcc
61 general description the key physical characteristic determining equivalent series inductance (esl) of a capacitor is the size of the current loop it creates. the smaller the current loop, the lower the esl. a standard surface mount mlcc is rectangular in shape with electrical terminations on its shorter sides. a low inductance chip capacitor (licc) sometimes referred to as reverse geometry capacitor (rgc) has its terminations on the longer sides of its rectangular shape. the image on the right shows the termination differences between an mlcc and an licc. when the distance between terminations is reduced, the size of the current loop is reduced. since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower esl then an 0603. the reduction in esl varies by eia size, however, esl is typically reduced 60% or more with an licc versus a standard mlcc. avx licc products are available with a lead-free finish of plated nickel/tin. low inductance capacitors (rohs) 0612/0508/0306/0204 licc (low inductance chip capacitors) how to order mlcc licc 0.001 0.01 0.1 1 10 1 10 100 1000 frequency (mhz) impedance (ohm s ) licc_0612 mlcc_1206 0.001 0.01 0.1 1 10 1 10 100 1000 frequency (mhz) impedance (ohms) licc_0508 mlcc_0805 0612 size 0204 0306 0508 0612 z voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v 5 = 50v d dielectric c = x7r d = x5r w = x6s z = x7s 105 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance k = 10% m = 20% a failure rate a = n/a t terminations t = plated ni and sn 2 packaging available 2 = 7" reel 4 = 13" reel a* thickness thickness mm (in) 0.35 (0.014) 0.56 (0.022) 0.61 (0.024) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050) typical impedance characteristics performance characteristics capacitance tolerances k = 10%; m = 20% operation x7r = -55c to +125c temperature range x5r = -55c to +85c x7s = -55c to +125c temperature coefficient x7r, x5r = 15%; x7s = 22% voltage ratings 4, 6.3, 10, 16, 25 vdc dissipation factor 4v, 6.3v = 6.5% max; 10v = 5.0% max; 16v = 3.5% max; 25v = 3.0% max insulation resistance 100,000m min, or 1,000m per (@+25c, rvdc) f min.,whichever is less note: contact factory for availability of termination and tolerance options for specific part numbers.
62 low inductance capacitors (rohs) 0612/0508/0306/0204 licc (low inductance chip capacitors) size 0204 0306 0508 0612 packaging embossed embossed embossed length mm 0.81 0.15 1.27 0.25 1.60 0.25 (in.) (0.032 0.006) (0.050 0.010) (0.063 0.010) width mm 1.60 0.15 2.00 0.25 3.20 0.25 (in.) (0.063 0.006) (0.080 0.010) (0.126 0.010) wvdc 4 6.3 10 16 4 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 cap 0.001 (f) 0.0022 0.0047 0.010 0.015 0.022 0.047 0.068 0.10 0.15 0.22 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 0306 code thickness a 0.61 (0.024) 0508 code thickness s 0.56 (0.022) v 0.76 (0.030) a 1.02 (0.040) 0612 code thickness s 0.56 (0.022) v 0.76 (0.030) w 1.02 (0.040) a 1.27 (0.050) solid = x7r = x5r = x7s mm (in.) 0204 code thickness c 0.35 (0.014) = x6s mm (in.) mm (in.) mm (in.) physical dimensions and pad layout w t t l lw t 0612 1.60 0.25 3.20 0.25 0.13 min. (0.063 0.010) (0.126 0.010) (0.005 min.) 0508 1.27 0.25 2.00 0.25 0.13 min. (0.050 0.010) (0.080 0.010) (0.005 min.) 0306 0.81 0.15 1.60 0.15 0.13 min. (0.032 0.006) (0.063 0.006) (0.005 min.) 0204 0.50 0.05 1.00 0.05 0.18 0.08 (0.020 0.002) (0.040 0.002) (0.007 0.003) physical chip dimensions mm (in) ? cc ? pad layout dimensions mm (in) abc 0612 0.76 (0.030) 3.05 (0.120) .635 (0.025) 0508 0.51 (0.020) 2.03 (0.080) 0.51 (0.020) 0306 0.31 (0.012) 1.52 (0.060) 0.51 (0.020) 0204 t - see range chart for thickness and codes
63 general description the key physical characteristic determining equivalent series inductance (esl) of a capacitor is the size of the current loop it creates. the smaller the current loop, the lower the esl. a standard surface mount mlcc is rectangular in shape with electrical terminations on its shorter sides. a low inductance chip capacitor (licc) sometimes referred to as reverse geometry capacitor (rgc) has its terminations on the longer sides of its rectangular shape. the image on the right shows the termination differences between an mlcc and an licc. when the distance between terminations is reduced, the size of the current loop is reduced. since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower esl then an 0603. the reduction in esl varies by eia size, however, esl is typically reduced 60% or more with an licc versus a standard mlcc. avx licc products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues. low inductance capacitors (snpb) 0612/0508/0306/0204 tin lead termination ?b? how to order mlcc licc ld18 size ld15 = 0204 ld16 = 0306 ld17 = 0508 ld18 = 0612 z voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v 5 = 50v d dielectric c = x7r d = x5r w = x6s 105 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance k = 10% m = 20% a failure rate a = n/a b terminations b = 5% min lead 2 packaging available 2 = 7" reel 4 = 13" reel a* thickness thickness mm (in) 0.35 (0.014) 0.56 (0.022) 0.61 (0.024) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050) note: contact factory for availability of termination and tolerance options for specific part numbers. performance characteristics capacitance tolerances k = 10%; m = 20% operation x7r = -55c to +125c temperature range x5r = -55c to +85c x7s = -55c to +125c temperature coefficient x7r, x5r = 15%; x7s = 22% voltage ratings 4, 6.3, 10, 16, 25 vdc dissipation factor 4v, 6.3v = 6.5% max; 10v = 5.0% max; 16v = 3.5% max; 25v = 3.0% max insulation resistance 100,000m min, or 1,000m per (@+25c, rvdc) f min.,whichever is less 0.001 0.01 0.1 1 10 1 10 100 1000 frequency (mhz) impedance (ohm s ) licc_0612 mlcc_1206 0.001 0.01 0.1 1 10 1 10 100 1000 frequency (mhz) impedance (ohms) licc_0508 mlcc_0805 typical impedance characteristics
64 preferred sizes are shaded size ld15 ld16 ld17 ld18 soldering reflow only reflow only reflow/wave packaging all paper all paper paper/embossed (l) length mm 0.81 0.15 1.27 0.25 1.60 0.25 (in.) (0.032 0.006) (0.050 0.010) (0.063 0.010) (w) width mm 1.60 0.15 2.00 0.25 3.20 0.25 (in.) (0.063 0.006) (0.080 0.010) (0.126 0.010) wvdc 4 6.3 10 16 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 cap 1000 a a a a s s s s v s s s s v (pf) 2200 a a a a s s s s v s s s s v 4700 a a a a s s s s v s s s s v cap 0.010 a a a a s s s s v s s s s v (f) 0.015 a a a a s s s s v s s s s w 0.022 a a a a s s s s v s s s s w 0.047 a a a s s s v a s s s s w 0.068 a a a s s s a a s s s v w 0.10 c c a a a s s v a a s s s v w 0.15 a a s s v s s s w w 0.22 a a s s a s s v 0.47 v v a s s v 0.68 a a v v w 1.0 a a v v a 1.5 a w w 2.2 aa 3.3 a 4.7 10 wvdc 4 6.3 10 16 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50 size 0204 0306 0508 0612 low inductance capacitors (snpb) 0612/0508/0306/0204 tin lead termination ?b? physical dimensions and pad layout w t t l lw t 0612 1.60 0.25 3.20 0.25 0.13 min. (0.063 0.010) (0.126 0.010) (0.005 min.) 0508 1.27 0.25 2.00 0.25 0.13 min. (0.050 0.010) (0.080 0.010) (0.005 min.) 0306 0.81 0.15 1.60 0.15 0.13 min. (0.032 0.006) (0.063 0.006) (0.005 min.) 0204 0.50 0.05 1.00 0.05 0.18 0.08 (0.020 0.002) (0.040 0.002) (0.007 0.003) physical chip dimensions mm (in) ? cc ? pad layout dimensions mm (in) abc 0612 0.76 (0.030) 3.05 (0.120) .635 (0.025) 0508 0.51 (0.020) 2.03 (0.080) 0.51 (0.020) 0306 0.31 (0.012) 1.52 (0.060) 0.51 (0.020) 0204 t - see range chart for thickness and codes ld16 - 0306 code thickness a 0.61 (0.024) ld17 - 0508 code thickness s 0.56 (0.022) v 0.76 (0.030) a 1.02 (0.040) ld18 - 0612 code thickness s 0.56 (0.022) v 0.76 (0.030) w 1.02 (0.040) a 1.27 (0.050) solid = x7r = x5r = x7s mm (in.) ld15 - 0204 code thickness c 0.35 (0.014) = x6s mm (in.) mm (in.) mm (in.)
65 general description inter-digitated capacitors (idcs) are used for both semiconductor package and board level decoupling. the equivalent series inductance (esl) of a single capacitor or an array of capacitors in parallel determines the response time of a power delivery network (pdn). the lower the esl of a pdn, the faster the response time. a designer can use many standard mlccs in parallel to reduce esl or a low esl inter-digitated capacitor (idc) device. these idc devices are available in versions with a maximum height of 0.95mm or 0.55mm. idcs are typically used on packages of semiconductor products with power levels of 15 watts or greater. inter-digitated capacitors are used on cpu, gpu, asic, and assp devices produced on 0.13, 90nm, 65nm, and 45nm processes. idc devices are used on both ceramic and organic package substrates. these low esl surface mount capacitors can be placed on the bottom side or the top side of a package substrate. the low profile 0.55mm maximum height idcs can easily be used on the bottom side of bga packages or on the die side of packages under a heat spreader. idcs are used for board level decoupling of systems with speeds of 300mhz or greater. low esl idcs free up valuable board space by reducing the number of capacitors required versus standard mlccs. there are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors. the inter-digitated capacitor (idc) technology was developed by avx. this is the second family of low inductance mlcc products created by avx. idcs are a cost effective alternative to avx?s first generation low esl family for high-reliability applications known as lica (low inductance chip array). avx idc products are available with a lead-free finish of plated nickel/tin. how to order + ? + + ? + 0.001 1 10 100 1000 frequency (mhz) impedance (ohm s ) 0.01 0.1 1 10 licc_0612 idc_0612 mlcc_1206 performance characteristics capacitance tolerance 20% preferred operation x7r = -55c to +125c temperature range x5r = -55c to +85c x7s = -55c to +125c temperature coefficient 15% (0vdc) voltage ratings 4, 6.3, 10, 16 vdc dissipation factor 4v, 6.3v = 6.5% max; 10v = 5.0% max; 16v = 3.5% max insulation resistance 100,000m min, or 1,000m per (@+25c, rvdc) f min.,whichever is less dielectric strength no problems observed after 2.5 x rvdc for 5 seconds at 50ma max current cte (ppm/c) 12.0 thermal conductivity 4-5w/m k terminations plated nickel and solder available max. thickness 0.037" (0.95mm) w style 3 idc case size 2 = 0508 3 = 0612 l low inductance 1 number of terminals 1 = 8 terminals 6 voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v d dielectric c = x7r d = x5r z = x7s 225 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance m = 20% t termination t = plated ni and sn 3 packaging available 1=7" reel 3=13" reel a thickness max. thickness mm (in.) a=0.95 (0.037) s=0.55 (0.022) a failure rate a = n/a 0612 0508 idc low inductance capacitors (rohs) 0612/0508 idc (interdigitated capacitors) note: contact factory for availability of termination and tolerance options for specific part numbers. typical impedance
66 idc low inductance capacitors (rohs) 0612/0508 idc (interdigitated capacitors) size thin 0508 0508 thin 0612 0612 length mm 2.03 0.20 2.03 0.20 3.20 0.20 3.20 0.20 (in.) (0.080 0.008) (0.080 0.008) (0.126 0.008) (0.126 0.008) width mm 1.27 0.20 1.27 0.20 1.60 0.20 1.60 0.20 (in.) (0.050 0.008) (0.050 0.008) (0.063 0.008) (0.063 0.008) terminal mm 0.50 0.05 0.50 0.05 0.80 0.10 0.80 0.10 pitch (in.) (0.020 0.002) (0.020 0.002) (0.031 0.004) (0.031 0.004) thickness mm 0.55 max. 0.95 max. 0.55 max. 0.95 max. (in.) (0.022) max. (0.037) max. (0.022) max. (0.037) max. wvdc 4 6.3 10 16 25 4 6.3 10 16 25 4 6.3 10 16 4 6.3 10 16 cap (f) 0.01 0.033 0.047 0.068 0.10 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 = x7r = x5r = x7s consult factory for additional requirements 0612 pad layout dimensions abcd e 0.89 1.65 2.54 0.46 0.80 (0.035) (0.065) (0.100) (0.018) (0.031) 0508 abcd e 0.64 1.27 1.91 0.28 0.50 (0.025) (0.050) (0.075) (0.011) (0.020) l w bw bl p 3.20 0.20 1.60 0.20 0.41 0.10 0.18 0.80 0.10 (0.126 0.008) (0.063 0.008) (0.016 0.004) (0.007 ) (0.031 0.004) +0.010 -0.003 physical chip dimensions millimeters (inches) +0.25 -0.08 l w bw bl p 2.030.20 1.270.20 0.25 0.18 0.50 0.05 (0.0800.008) (0.0500.008) (0.010 ) (0.007 ) ( 0.020 0.002) +0.010 -0.003 0508 +0.25 -0.08 +0.006 -0.004 +0.15 -0.10 0612 physical dimensions and pad layout a b c d e w bl bw t l p
67 how to order + ? + + ? + 0.001 1 10 100 1000 frequency (mhz) impedance (ohm s ) 0.01 0.1 1 10 licc_0612 idc_0612 mlcc_1206 performance characteristics capacitance tolerance 20% preferred operation x7r = -55c to +125c temperature range x5r = -55c to +85c x7s = -55c to +125c temperature coefficient 15% (0vdc) voltage ratings 4, 6.3, 10, 16 vdc dissipation factor 4v, 6.3v = 6.5% max; 10v = 5.0% max; 16v = 3.5% max insulation resistance 100,000m min, or 1,000m per (@+25c, rvdc) f min.,whichever is less dielectric strength no problems observed after 2.5 x rvdc for 5 seconds at 50ma max current cte (ppm/c) 12.0 thermal conductivity 4-5w/m k terminations plated nickel and 5% min. lead available max. thickness 0.037" (0.95mm) l style 3 idc case size 2 = 0508 3 = 0612 l low inductance 1 number of terminals 1 = 8 terminals 6 voltage 4 = 4v 6 = 6.3v z = 10v y = 16v 3 = 25v d dielectric c = x7r d = x5r z = x7s 225 capacitance code (in pf) 2 sig. digits + number of zeros m capacitance tolerance m = 20% b termination b = 5% min. lead 3 packaging available 1=7" reel 3=13" reel a thickness max. thickness mm (in.) a=0.95 (0.037) s=0.55 (0.022) a failure rate a = n/a 0612 0508 idc low inductance capacitors (snpb) 0612/0508 idc with sn/pb termination general description inter-digitated capacitors (idcs) are used for both semiconductor package and board level decoupling. the equivalent series inductance (esl) of a single capacitor or an array of capacitors in parallel determines the response time of a power delivery network (pdn). the lower the esl of a pdn, the faster the response time. a designer can use many standard mlccs in parallel to reduce esl or a low esl inter-digitated capacitor (idc) device. these idc devices are available in versions with a maximum height of 0.95mm or 0.55mm. idcs are typically used on packages of semiconductor products with power levels of 15 watts or greater. inter-digitated capacitors are used on cpu, gpu, asic, and assp devices produced on 0.13, 90nm, 65nm, and 45nm processes. idc devices are used on both ceramic and organic package substrates. these low esl surface mount capacitors can be placed on the bottom side or the top side of a package substrate. the low profile 0.55mm maximum height idcs can easily be used on the bottom side of bga packages or on the die side of packages under a heat spreader. idcs are used for board level decoupling of systems with speeds of 300mhz or greater. low esl idcs free up valuable board space by reducing the number of capacitors required versus standard mlccs. there are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors. the inter-digitated capacitor (idc) technology was developed by avx. this is the second family of low inductance mlcc products created by avx. idcs are a cost effective alternative to avx?s first generation low esl family for high-reliability applications known as lica (low inductance chip array). avx idc products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues. note: contact factory for availability of termination and tolerance options for specific part numbers. typical impedance
68 idc low inductance capacitors (snpb) 0612/0508 idc with sn/pb termination 0612 pad layout dimensions abcd e 0.89 1.65 2.54 0.46 0.80 (0.035) (0.065) (0.100) (0.018) (0.031) 0508 abcd e 0.64 1.27 1.91 0.28 0.50 (0.025) (0.050) (0.075) (0.011) (0.020) l w bw bl p 3.20 0.20 1.60 0.20 0.41 0.10 0.18 0.80 0.10 (0.126 0.008) (0.063 0.008) (0.016 0.004) (0.007 ) (0.031 0.004) +0.010 -0.003 physical chip dimensions millimeters (inches) +0.25 -0.08 l w bw bl p 2.030.20 1.270.20 0.2540.10 0.18 0.50 0.05 (0.0800.008) (0.0500.008) (0.0100.004) (0.007 ) ( 0.020 0.002) +0.010 -0.003 0508 +0.25 -0.08 0612 physical dimensions and pad layout a b c d e w bl bw t l p size thin 0508 0508 thin 0612 0612 length mm 2.03 0.20 2.03 0.20 3.20 0.20 3.20 0.20 (in.) (0.080 0.008) (0.080 0.008) (0.126 0.008) (0.126 0.008) width mm 1.27 0.20 1.27 0.20 1.60 0.20 1.60 0.20 (in.) (0.050 0.008) (0.050 0.008) (0.063 0.008) (0.063 0.008) terminal mm 0.50 0.05 0.50 0.05 0.80 0.10 0.80 0.10 pitch (in.) (0.020 0.002) (0.020 0.002) (0.031 0.004) (0.031 0.004) thickness mm 0.55 max. 0.95 max. 0.55 max. 0.95 max. (in.) (0.022) max. (0.037) max. (0.022) max. (0.037) max. wvdc 4 6.3 10 16 25 4 6.3 10 16 25 4 6.3 10 16 4 6.3 10 16 cap (f) 0.01 0.033 0.047 0.068 0.10 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 = x7r = x5r = x7s consult factory for additional requirements
69 lga low inductance capacitors 0204/0306/0805 land grid arrays land grid array (lga) capacitors are the latest family of low inductance mlccs from avx. these new lga products are the third low inductance family developed by avx. the in- novative lga technology sets a new standard for low inductance mlcc performance. electronic products awarded its 2006 product of the year award to the lga decoupling capacitor. our initial 2 terminal versions of lga technology deliver the performance of an 8 terminal idc low inductance mlcc with a number of advantages including: ? simplified layout of 2 large solder pads compared to 8 small pads for idcs ? opportunity to reduce pcb or substrate contribution to system esl by using multi- ple parallel vias in solder pads ? advanced fct manufacturing process used to create uniformly flat terminations on the capacitor that resist ?tombstoning? ? better solder joint reliability applications semiconductor packages ? microprocessors/cpus ? graphics processors/gpus ? chipsets ? fpgas ? asics board level device decoupling ? frequencies of 300 mhz or more ? ics drawing 15w or more ? low voltages ? high speed buses 0306 2 terminal lga comparison with 0306 8 terminal idc 0.001 0.01 0.1 1 1 10 100 1000 frequency (mhz) impedance ( )
70 lga low inductance capacitors 0204/0306/0805 land grid arrays series l w t bw bl lg12 (0204) 0.5 0.05 1.00 0.10 0.50 0.05 0.8 0.10 0.13 0.08 (0.0200.002) (0.039 0.004) (0.020 0.002) (0.031 0.004) (0.005 0.003) lg22 (0306) 0.76 0.10 1.60 0.10 0.50 0.05 1.50 0.10 0.28 0.08 (0.030 0.004) (0.063 0.004) (0.020 0.002) (0.059 0.004) (0.011 0.003) lgc2 (0805) 2.06 0.10 1.32 0.10 0.50 0.05 1.14 0.10 0.90 0.08 (0.081 0.004) (0.052 0.004) (0.020 0.002) (0.045 0.004) (0.035 0.003) part dimensions mm (inches) recommended solder pad dimensions mm (inches) pl g pw1 series pl pw1 g lg12 (0204) 0.50 (0.020) 1.00 (0.039) 0.20 (0.008) lg22 (0306) 0.65 (0.026) 1.50 (0.059) 0.20 (0.008) lgc2 (0805) 1.25 (0.049) 1.40 (0.055) 0.20 (0.008) how to order lg style 1 case size 1 = 0204 2 = 0306 c = 0805 2 number of terminals 2 6 working voltage 4 = 4v 6 = 6.3v z = 10v z temperature characteristic c = x7r d = x5r z = x7s w = x6s 104 coded cap m cap tolerance m = 20% a termination style a = ?u? land t termination 100% sn* *contact factory for other termination finishes 2 packaging tape & reel 2 = 7" reel 4 = 13" reel s thickness s = 0.55mm max 1 number of capacitors size lg12 (0204) lg22 (0306) lgc2 (0805) length mm (in.) 0.50 (0.020) 0.76 (0.030) 2.06 (0.081) width mm (in.) 1.00 (0.039) 1.60 (0.063) 1.32 (0.052) temp. char. x5r (d) x7s (z) x6s (w) x7r (c) x5r (d) x7s (z) x6s (w) x7r (c) x5r (d) x7s (z) x6s (w) working voltage 6.3 4 6.3 4 6.3 4 10 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 (6) (4) (6) (4) (6) (4) (z) (6) (4) (6) (4) (6) (4) (6) (4) (6) (4) (6) (4) (6) (4) (6) (4) cap (f) 0.010 (103) 0.022 (223) 0.047 (473) 0.100 (104) 0.220 (224) 0.330 (334) 0.470 (474) 1.000 (105) 2.200 (225) = x7r = x5r = x7s = x6s t l bl bw l w bl standard geometry lga lgc2 top view side 1 side 2 t l bl w bw l bl reverse geometry lga lg12, lg22 top view side 1 side 2 please contact avx for values
71 lica ? arrays utilize up to four separate capacitor sections in one ceramic body (see configurations and capacitance options). these designs exhibit a number of technical advancements: low inductance features? low resistance platinum electrodes in a low aspect ratio pattern double electrode pickup and perpendicular current paths c4 ?flip-chip? technology for minimal interconnect inductance how to order solder ball and pad dimensions "w" = .06mm 0.925 0.03mm 0.925 0.03mm vertical and horizontal pitch=0.4 .02mm 0.8 .03 (2 pics) 0.6 .100mm l = .06mm code face to denote orientation (optional) "h b " .06 "h t " = (h b +.096 .02mm typ) c4 ball diameter: .164 .03mm } code width length height (body height) (w) (l) body (h b ) 1 1.600mm 1.850mm 0.875mm 3 1.600mm 1.850mm 0.650mm 5 1.600mm 1.850mm 1.100mm 6 1.600mm 1.850mm 0.500mm 7 1.600mm 1.850mm 1.600mm termination options solder balls t55t/s55s units co nanofarads 1.45 x co nanofarads 0.7 x co nanofarads 15 percent 20 milliohms 0.2 ohms 300 megaohms 500 volts 8.5 ppm/c 25-100 30 pico-henries dc to 5 gigahertz -55 to 125c low inductance capacitors lica ? (low inductance decoupling capacitor arrays) table 1 typical parameters capacitance, 25c capacitance, 55c capacitance, 85c dissipation factor 25 esr (nominal) dc resistance ir (minimum @25) (design dependent) dielectric breakdown, min thermal coefficient of expansion inductance: (design dependent) (nominal) frequency of operation ambient temp range ?centrality?* *note: the c4 pattern will be within 0.1mm of the center of the lica body, in both axes. pin a1 is the lower left hand ball. termination option r or n lica style & size 3 voltage 5v = 9 10v = z 25v = 3 t dielectric d = x5r t = t55t s = high k t55t 102 cap/section (eia code) 102 = 1000 pf 103 = 10 nf 104 = 100 nf m capacitance tolerance m = 20% p = gmv 3 height code 6 = 0.500mm 3 = 0.650mm 1 = 0.875mm 5 = 1.100mm 7 = 1.600mm f termination f = c4 solder balls- 97pb/3sn h = c4 solder balls low esr g = lead free sac r = cr-cu-au n = cr-ni-au v = eutectic lead- tin bump- 37%pb/63%sn x = none c reel packaging m = 7" reel r = 13" reel 6 = 2"x2" waffle pack 8 = 2"x2" black waffle pack 7 = 2"x2" waffle pack w/ termination facing up a = 2"x2" black waffle pack w/ termination facing up c = 4"x4" waffle pack w/ clear lid a inspection code a = standard b = cots+ x = mil-prf-123 a code face a = bar b = no bar c = dot, s55s dielectrics d = triangle 4 # of caps/part 1 = one 2 = two 4 = four note: contact factory for availability of termination and tolerance options for specific part numbers. termination option f, h, g or v
72 0 -14 -28 -42 -56 -70 3 30 300 3000 linear1.sch1.db[s21] freq (mhz) maximum +45% 60c 85c 25c 50c capacitance change lica t55t/s55s ceramic 0% maximum -30% db cap ca d c b a b1 d1 cap 1 b2 d2 cap 2 c1 a1 c2 a2 d1 c1 b1 a1 d2 c2 b2 a2 b1 d1 cap 1 b2 d2 cap 2 c1 a1 c2 a2 b3 d3 cap 3 b4 d4 cap 4 c3 a3 c4 a4 d1 c1 b1 a1 d2 c2 b2 a2 d3 c3 b3 a3 d4 c4 b4 a4 configuration lica common part number list temperature vs capacitance change sprocket holes: 1.55mm, 4mm pitch wells for lica ? part, c4 side down 1.75mm x 2.01mm x 1.27mm deep on 4mm centers 0.64mm push holes code face to denote orientation (typical) 76 pieces/foot 1.75mm waffle pack options for lica ? fluoroware h20-080 option "c" 400 pcs. per 4" x 4" package option "6" 100 pcs. per 2" x 2" package code face to denote orientation code face to denote orientation note: standard configuration is termination side down lica ? packaging scheme ?m? and ?r? 8mm conductive plastic tape on reel: ?m?=7" reel max. qty. 3,000, ?r?=13" reel max. qty. 8,000 schematic code face schematic code face schematic code face part number voltage thickness (mm) capacitors per package lica3t193m3fc4aa 25 0.650 4 lica3t153p3fc4aa 25 0.650 4 lica3t134m1fc1aa 25 0.875 1 lica3t104p1fc1aa 25 0.875 1 lica3t333m1fc4aa 25 0.875 4 lica3t263p3fc4aa 25 0.650 4 lica3t244m5fc1aa 25 1.100 1 lica3t194p5fc1aa 25 1.100 1 lica3t394m7fc1ab 25 1.600 1 lica3t314p7fc1ab 25 1.600 1 extended range licazt623m3fc4ab 10 0.650 4 lica3t104m3fc1a 25 0.650 1 lica3t803p3fc1a 25 0.650 1 lica3t423m3fc2a 25 0.650 2 lica3t333p3fc2a 25 0.650 2 lica3s253m3fc4a 25 0.650 4 licazd753m3fc4ad 10 0.650 4 licazd504m3fc1ab 10 0.650 1 licazd604m7fc1ab 10 1.600 1 lica3d193m3fc4ab 25 0.650 4 low inductance capacitors lica ? (low inductance decoupling capacitor arrays) typical s21 for lica at single via
73 notes: capacitors with x7r dielectrics are not intended for applications across ac supply mains or ac line filtering with polar ity reversal. contact plant for recommendations. contact factory for availability of termination and tolerance options for specific part numbers. high voltage mlc chips for 600v to 5000v application how to order dimensions millimeters (inches) size 0805 1206 1210* 1808* 1812* 1825* 2220* 2225* 3640* (l) length 2.01 0.20 3.20 0.20 3.20 0.20 4.57 0.25 4.50 0.30 4.50 0.30 5.70 0.40 5.72 0.25 9.14 0.25 (0.079 0.008) (0.126 0.008) (0.126 0.008) (0.180 0.010) (0.177 0.012) (0.177 0.012) (0.224 0.016) (0.225 0.010) (0.360 0.010) (w) width 1.25 0.20 1.60 0.20 2.50 0.20 2.03 0.25 3.20 0.20 6.40 0.30 5.00 0.40 6.35 0.25 10.2 0.25 (0.049 0.008) (0.063 0.008) (0.098 0.008) (0.080 0.010) (0.126 0.008) (0.252 0.012) (0.197 0.016) (0.250 0.010) (0.400 0.010) (t) thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060) high value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. avx special high voltage mlc chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in smps, and high voltage coupling/dc blocking. these high voltage chip designs exhibit low esrs at high frequencies. larger physical sizes than normally encountered chips are used to make high voltage mlc chip products. special precautions must be taken in applying these chips in surface mount assemblies. the temperature gradient during heating or cooling cycles should not exceed 4oc per second. the preheat temperature must be within 50oc of the peak temperature reached by the ceramic bodies through the soldering process. chip sizes 1210 and larger should be reflow soldered only. capacitors may require protective surface coating to prevent external arcing. *reflow soldering only w l t t 1808 avx style 0805 1206 1210 1808 1812 1825 2220 2225 3640 a voltage 600v/630v = c 1000v = a 1500v = s 2000v = g 2500v = w 3000v = h 4000v = j 5000v = k a temperature coefficient c0g = a x7r = c 271 capacitance code (2 significant digits + no. of zeros) examples: 10 pf = 100 100 pf = 101 1,000 pf = 102 22,000 pf = 223 220,000 pf = 224 1 f = 105 k capacitance tolerance c0g:j = 5% k = 10% m = 20% x7r: k = 10% m = 20% z = +80%, -20% a test level a = standard 1 termination* 1 = pd/ag t = plated ni and sn (rohs compliant) 1 packaging 1 = 7" reel 3 = 13" reel 9 = bulk a special code a = standard *note: terminations with 5% minimum lead (pb) is available, see pages 75 and 76 for ld style. new 630v range
74 high voltage mlc chips for 600v to 5000v applications voltage 0805 1206 1210 1808 1812 1825 2220 2225 3640 600/630 min. 10pf 10 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 1000 pf max. 330pf 1200 pf 2700 pf 3300 pf 5600 pf 0.012 f 0.012 f 0.018 f 0.047 f min. 10pf 10 pf 10 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 1000 max. 180pf 560 pf 1500 pf 2200 pf 3300 pf 8200 pf 0.010 f 0.010 f 0.022 f min. ? 10 pf 10 pf 10 pf 10 pf 100 pf 100 pf 100 pf 100 pf 1500 max. ? 270 pf 680 pf 820 pf 1800 pf 4700 pf 4700 pf 5600 pf 0.010 f min. ? 10 pf 10 pf 10 pf 10 pf 100 pf 100 pf 100 pf 100 pf 2000 max. ? 120 pf 270 pf 330 pf 1000 pf 1800 pf 2200 pf 2700 pf 6800 pf min. ? ? ? 10 pf 10 pf 10 pf 100 pf 100 pf 100 pf 2500 max. ? ? ? 180 pf 470 pf 1200 pf 1500 pf 1800 pf 3900 pf min. ? ? ? 10 pf 10 pf 10 pf 10 pf 10 pf 100 pf 3000 max. ? ? ? 120 pf 330 pf 820 pf 1000 pf 1200 pf 2700 pf min. ? ? ? 10 pf 10 pf 10 pf 10 pf 10 pf 100 pf 4000 max. ? ? ? 47 pf 150 pf 330 pf 470 pf 560 pf 1200 pf min. ? ? ? ? ? ? 10 pf 10 pf 10 pf 5000 max. ? ? ? ? ? ? 220 pf 270 pf 820 pf high voltage c0g capacitance values voltage 0805 1206 1210 1808 1812 1825 2220 2225 3640 600/630 min. 100pf 1000 pf 1000 pf 1000 pf 1000 pf 0.010 f 0.010 f 0.010 f 0.010 f max. 6800pf 0.022 f 0.056 f 0.056 f 0.100 f 0.180 f 0.220 f 0.220 f 0.560 f min. 100pf 100 pf 1000 pf 1000 pf 1000 pf 1000 pf 1000 pf 1000 pf 0.010 f 1000 max. 1500pf 6800 pf 0.015 f 0.018 f 0.027 f 0.100 f 0.100 f 0.100 f 0.220 f min. ? 100 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 1000 pf 1500 max. ? 2700 pf 4700 pf 6800 pf 0.012 f 0.033 f 0.039 f 0.047 f 0.100 f development 6800 pf 0.015 f 0.056 f 0.056 f 0.068 f min. ? 10 pf 100 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 2000 max. ? 1500 pf 3000 pf 2700 pf 4700 pf 0.010 f 0.010 f 0.022 f 0.027 f development 3900 pf 3900 pf 8200 pf 0.027 f 0.027 f 0.033 f min. ? ? ? 10 pf 10 pf 100 pf 100 pf 100 pf 1000 pf 2500 max. ? ? ? 1800 pf 3300 pf 6800 pf 8200 pf 0.010 f 0.022 f development 2200 pf 5600 pf 0.015 f 0.018 f 0.022 f min. ? ? ? 10 pf 10 pf 100 pf 100 pf 100 pf 1000 pf 3000 max. ? ? ? 1500 pf 2200 pf 4700 pf 4700 f 6800 pf 0.018 f development 1800 pf 4700 pf 0.012 f 0.012 f 0.015 f min. ? ? ? ? ? ? ? ? 100 pf 4000 max. ? ? ? ? ? ? ? ? 6800 pf min. ? ? ? ? ? ? ? ? 100 pf 5000 max. ? ? ? ? ? ? ? ? 3300 pf high voltage x7r maximum capacitance values x7r dielectric performance characteristics capacitance range 10 pf to 0.047 f (25c, 1.0 0.2 vrms at 1khz, for 1000 pf use 1 mhz) capacitance tolerances 5%, 10%, 20% dissipation factor 0.1% max. (+25c, 1.0 0.2 vrms, 1khz, for 1000 pf use 1 mhz) operating temperature range -55c to +125c temperature characteristic 0 30 ppm/c (0 vdc) voltage ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 vdc (+125c) insulation resistance (+25c, at 500 vdc) 100k m min. or 1000 m - f min., whichever is less insulation resistance (+125c, at 500 vdc) 10k m min. or 100 m - f min., whichever is less dielectric strength minimum 120% rated voltage for 5 seconds at 50 ma max. current c0g dielectric performance characteristics capacitance range 10 pf to 0.56 f (25c, 1.0 0.2 vrms at 1khz) capacitance tolerances 10%; 20%; +80%, -20% dissipation factor 2.5% max. (+25c, 1.0 0.2 vrms, 1khz) operating temperature range -55c to +125c temperature characteristic 15% (0 vdc) voltage ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 vdc (+125c) insulation resistance (+25c, at 500 vdc) 100k m min. or 1000 m - f min., whichever is less insulation resistance (+125c, at 500 vdc) 10k m min. or 100 m - f min., whichever is less dielectric strength minimum 120% rated voltage for 5 seconds at 50 ma max. current
75 notes: capacitors with x7r dielectrics are not intended for applications across ac supply mains or ac line filtering with polar ity reversal. contact plant for recommendations. contact factory for availability of termination and tolerance options for specific part numbers. * reflow soldering only. high voltage mlc chips tin/lead termination ?b? for 600v to 5000v application how to order avx corporation will support those customers for commercial and military multilayer ceramic capacitors with a termination consisting of 5% minimum lead. this termination is indicated by the use of a ?b? in the 12th position of the avx catalog part number. this fulfills avx?s commitment to providing a full range of products to our customers. avx has provided in the following pages, a full range of values that we are offering in this ?b? termination. larger physical sizes than normally encountered chips are used to make high voltage mlc chip product. special precautions must be taken in applying these chips in surface mount assemblies. the temperature gradient during heating or cooling cycles should not exceed 4oc per second. the preheat temperature must be within 50oc of the peak temperature reached by the ceramic bodies through the soldering process. chip sizes 1210 and larger should be reflow soldered only. capacitors may require protective surface coating to prevent external arcing. w l t t a temperature coefficient c0g = a x7r = c 271 capacitance code (2 significant digits + no. of zeros) examples: 10 pf = 100 100 pf = 101 1,000 pf = 102 22,000 pf = 223 220,000 pf = 224 1 f = 105 k capacitance tolerance c0g: j = 5% k = 10% m = 20% x7r: k = 10% m = 20% z = +80%, -20% a test level a = standard b termination b = 5% min pb 1 packaging 1 = 7" reel 3 = 13" reel 9 = bulk a special code a = standard a voltage 600v/630v = c 1000v = a 1500v = s 2000v = g 2500v = w 3000v = h 4000v = j 5000v = k new 630v range ld08 avx style ld05 - 0805 ld06 - 1206 ld10 - 1210 ld08 - 1808 ld12 - 1812 ld13 - 1825 ld20 - 2220 ld14 - 2225 ld40 - 3640 dimensions millimeters (inches) size ld05 (0805) ld06 (1206) ld10* (1210) ld08* (1808) ld12* (1812) ld13* (1825) ld20* (2220) ld25* (2225) ld40* (3640) (l) length 2.01 0.20 3.20 0.20 3.20 0.20 4.57 0.25 4.50 0.30 4.50 0.30 5.70 0.40 5.72 0.25 9.14 0.25 (0.079 0.008) (0.126 0.008) (0.126 0.008) (0.180 0.010) (0.177 0.012) (0.177 0.012) (0.224 0.016) (0.225 0.010) (0.360 0.010) (w) width 1.25 0.20 1.60 0.20 2.50 0.20 2.03 0.25 3.20 0.20 6.40 0.30 5.00 0.40 6.35 0.25 10.2 0.25 (0.049 0.008) (0.063 0.008) (0.098 0.008) (0.080 0.010) (0.126 0.008) (0.252 0.012) (0.197 0.016) (0.250 0.010) (0.400 0.010) (t) thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54 max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100) (t) terminal min. 0.50 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030) max. (0.020 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060)
76 high voltage mlc chips tin/lead termination ?b? for 600v to 5000v application x7r dielectric performance characteristics c0g dielectric performance characteristics capacitance range 10 pf to 0.047 f (25c, 1.0 0.2 vrms at 1khz, for 1000 pf use 1 mhz) capacitance tolerances 5%, 10%, 20% dissipation factor 0.1% max. (+25c, 1.0 0.2 vrms, 1khz, for 1000 pf use 1 mhz) operating temperature range -55c to +125c temperature characteristic 0 30 ppm/c (0 vdc) voltage ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 vdc (+125c) insulation resistance (+25c, at 500 vdc) 100k m min. or 1000 m - f min., whichever is less insulation resistance (+125c, at 500 vdc) 10k m min. or 100 m - f min., whichever is less dielectric strength minimum 120% rated voltage for 5 seconds at 50 ma max. current capacitance range 10 pf to 0.56 f (25c, 1.0 0.2 vrms at 1khz) capacitance tolerances 10%; 20%; +80%, -20% dissipation factor 2.5% max. (+25c, 1.0 0.2 vrms, 1khz) operating temperature range -55c to +125c temperature characteristic 15% (0 vdc) voltage ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 vdc (+125c) insulation resistance (+25c, at 500 vdc) 100k m min. or 1000 m - f min., whichever is less insulation resistance (+125c, at 500 vdc) 10k m min. or 100 m - f min., whichever is less dielectric strength minimum 120% rated voltage for 5 seconds at 50 ma max. current voltage ld05 (0805) ld06 (1206) ld10 (1210) ld08 (1808) ld12 (1812) ld13 (1825) ld20 (2220) ld14 (2225) ld40 (3640) 600/630 min. 10pf 10 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 1000 pf max. 330pf 1200 pf 2700 pf 3300 pf 5600 pf 0.012 f 0.012 f 0.018 f 0.047 f min. 10pf 10 pf 10 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 1000 max. 180pf 560 pf 1500 pf 2200 pf 3300 pf 8200 pf 0.010 f 0.010 f 0.022 f min. ? 10 pf 10 pf 10 pf 10 pf 100 pf 100 pf 100 pf 100 pf 1500 max. ? 270 pf 680 pf 820 pf 1800 pf 4700 pf 4700 pf 5600 pf 0.010 f min. ? 10 pf 10 pf 10 pf 10 pf 100 pf 100 pf 100 pf 100 pf 2000 max. ? 120 pf 270 pf 330 pf 1000 pf 1800 pf 2200 pf 2700 pf 6800 pf min. ? ? ? 10 pf 10 pf 10 pf 100 pf 100 pf 100 pf 2500 max. ? ? ? 180 pf 470 pf 1200 pf 1500 pf 1800 pf 3900 pf min. ? ? ? 10 pf 10 pf 10 pf 10 pf 10 pf 100 pf 3000 max. ? ? ? 120 pf 330 pf 820 pf 1000 pf 1200 pf 2700 pf min. ? ? ? 10 pf 10 pf 10 pf 10 pf 10 pf 100 pf 4000 max. ? ? ? 47 pf 150 pf 330 pf 470 pf 560 pf 1200 pf min. ? ? ? ? ? ? 10 pf 10 pf 10 pf 5000 max. ? ? ? ? ? ? 220 pf 270 pf 820 pf high voltage c0g capacitance values voltage ld05 (0805) ld06 (1206) ld10 (1210) ld08 (1808) ld12 (1812) ld13 (1825) ld20 (2220) ld14 (2225) ld40 (3640) 600/630 min. 100pf 1000 pf 1000 pf 1000 pf 1000 pf 0.010 f 0.010 f 0.010 f 0.010 f max. 6800pf 0.022 f 0.056 f 0.056 f 0.100 f 0.180 f 0.220 f 0.220 f 0.560 f min. 100pf 100 pf 1000 pf 1000 pf 1000 pf 1000 pf 1000 pf 1000 pf 0.010 f 1000 max. 1500pf 6800 pf 0.015 f 0.018 f 0.027 f 0.100 f 0.100 f 0.100 f 0.220 f min. ? 100 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 1000 pf 1500 max. ? 2700 pf 4700 pf 6800 pf 0.012 f 0.033 f 0.039 f 0.047 f 0.100 f development 6800 pf 0.015 f 0.056 f 0.056 f 0.068 f min. ? 10 pf 100 pf 100 pf 100 pf 100 pf 1000 pf 1000 pf 1000 pf 2000 max. ? 1500 pf 3300 pf 2700 pf 4700 pf 0.010 f 0.010 f 0.022 f 0.027 f development 3900 pf 3900 pf 8200 pf 0.027 f 0.027 f 0.033 f min. ? ? ? 10 pf 10 pf 100 pf 100 pf 100 pf 1000 pf 2500 max. ? ? ? 1800 pf 3300 pf 6800 pf 8200 pf 0.010 f 0.022 f development 2200 pf 5600 pf 0.015 f 0.018 f 0.022 f min. ? ? ? 10 pf 10 pf 100 pf 100 pf 100 pf 1000 pf 3000 max. ? ? ? 1500 pf 2200 pf 4700 pf 4700 f 6800 pf 0.018 f development 1800 pf 4700 pf 0.012 f 0.012 f 0.015 f min. ? ? ? ? ? ? ? ? 100 pf 4000 max. ? ? ? ? ? ? ? ? 6800 pf min. ? ? ? ? ? ? ? ? 100 pf 5000 max. ? ? ? ? ? ? ? ? 3300 pf high voltage x7r maximum capacitance values
77 mil-prf-55681/chips part number example cdr01 thru cdr06 t w l d t military designation per mil-prf-55681 part number example cdr01 bp 101 b k s m mil style voltage-temperature limits capacitance rated voltage capacitance tolerance termination finish failure rate mil style: cdr01, cdr02, cdr03, cdr04, cdr05, cdr06 voltage temperature limits: bp = 0 30 ppm/c without voltage; 0 30 ppm/c with rated voltage from -55c to +125c bx = 15% without voltage; +15 ?25% with rated voltage from -55c to +125c capacitance: two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pf rated voltage: a = 50v, b = 100v capacitance tolerance: j 5%, k 10%, m 20% termination finish: m = palladium silver u = base metallization/barrier n = silver nickel gold metal/solder coated* s = solder-coated w = base metallization/barrier metal/tinned (tin or tin/ lead alloy) *solder shall have a melting point of 200c or less. failure rate level: m = 1.0%, p = .1%, r = .01%, s = .001% packaging: bulk is standard packaging. tape and reel per rs481 is available upon request. cross reference: avx/mil-prf-55681/cdr01 thru cdr06* per avx length (l) width (w) thickness (t) d termination band (t) mil-prf-55681 style max. min. max. min. max. min. cdr01 0805 .080 .015 .050 .015 .055 .020 ? .030 ? .010 cdr02 1805 .180 .015 .050 .015 .055 .020 ? ? .030 .010 cdr03 1808 .180 .015 .080 .018 .080 .020 ? ? .030 .010 cdr04 1812 .180 .015 .125 .015 .080 .020 ? ? .030 .010 cdr05 1825 .180 +.020 .250 +.020 .080 .020 ? ? .030 .010 -.015 -.015 cdr06 2225 .225 .020 .250 .020 .080 .020 ? ? .030 .010 *for cdr11, 12, 13, and 14 see avx microwave chip capacitor catalog note: contact factory for availability of termination and tolerance options for specific part numbers.
78 mil-prf-55681/chips military part number identification cdr01 thru cdr06 cdr01 thru cdr06 to mil-prf-55681 military rated temperature wvdc type capacitance capacitance and voltage- designation in pf tolerance temperature limits avx style 0805/cdr01 cdr01bp100b--- 10 j,k bp 100 cdr01bp120b--- 12 j bp 100 cdr01bp150b--- 15 j,k bp 100 cdr01bp180b--- 18 j bp 100 cdr01bp220b--- 22 j,k bp 100 cdr01bp270b--- 27 j bp 100 cdr01bp330b--- 33 j,k bp 100 cdr01bp390b--- 39 j bp 100 cdr01bp470b--- 47 j,k bp 100 cdr01bp560b--- 56 j bp 100 cdr01bp680b--- 68 j,k bp 100 cdr01bp820b--- 82 j bp 100 cdr01bp101b--- 100 j,k bp 100 cdr01b--121b--- 120 j,k bp,bx 100 cdr01b--151b--- 150 j,k bp,bx 100 cdr01b--181b--- 180 j,k bp,bx 100 cdr01bx221b--- 220 k,m bx 100 cdr01bx271b--- 270 k bx 100 cdr01bx331b--- 330 k,m bx 100 cdr01bx391b--- 390 k bx 100 cdr01bx471b--- 470 k,m bx 100 cdr01bx561b--- 560 k bx 100 cdr01bx681b--- 680 k,m bx 100 cdr01bx821b--- 820 k bx 100 cdr01bx102b--- 1000 k,m bx 100 cdr01bx122b--- 1200 k bx 100 cdr01bx152b--- 1500 k,m bx 100 cdr01bx182b--- 1800 k bx 100 cdr01bx222b--- 2200 k,m bx 100 cdr01bx272b--- 2700 k bx 100 cdr01bx332b--- 3300 k,m bx 100 cdr01bx392a--- 3900 k bx 50 cdr01bx472a--- 4700 k,m bx 50 avx style 1805/cdr02 cdr02bp221b--- 220 j,k bp 100 cdr02bp271b--- 270 j bp 100 cdr02bx392b--- 3900 k bx 100 cdr02bx472b--- 4700 k,m bx 100 cdr02bx562b--- 5600 k bx 100 cdr02bx682b--- 6800 k,m bx 100 cdr02bx822b--- 8200 k bx 100 cdr02bx103b--- 10,000 k,m bx 100 cdr02bx123a--- 12,000 k bx 50 cdr02bx153a--- 15,000 k,m bx 50 cdr02bx183a--- 18,000 k bx 50 cdr02bx223a--- 22,000 k,m bx 50 add appropriate failure rate add appropriate termination finish capacitance tolerance military rated temperature wvdc type capacitance capacitance and voltage- designation in pf tolerance temperature limits avx style 1808/cdr03 cdr03bp331b--- 330 j,k bp 100 cdr03bp391b--- 390 j bp 100 cdr03bp471b--- 470 j,k bp 100 cdr03bp561b--- 560 j bp 100 cdr03bp681b--- 680 j,k bp 100 cdr03bp821b-- 820 j bp 100 cdr03bp102b--- 1000 j,k bp 100 cdr03bx123b-- 12,000 k bx 100 cdr03bx153b--- 15,000 k,m bx 100 cdr03bx183b--- 18,000 k bx 100 cdr03bx223b--- 22,000 k,m bx 100 cdr03bx273b--- 27,000 k bx 100 cdr03bx333b--- 33,000 k,m bx 100 cdr03bx393a--- 39,000 k bx 50 cdr03bx473a--- 47,000 k,m bx 50 cdr03bx563a--- 56,000 k bx 50 cdr03bx683a--- 68,000 k,m bx 50 avx style 1812/cdr04 cdr04bp122b--- 1200 j bp 100 cdr04bp152b--- 1500 j,k bp 100 cdr04bp182b--- 1800 j bp 100 cdr04bp222b--- 2200 j,k bp 100 cdr04bp272b--- 2700 j bp 100 cdr04bp332b--- 3300 j,k bp 100 cdr04bx393b--- 39,000 k bx 100 cdr04bx473b--- 47,000 k,m bx 100 cdr04bx563b--- 56,000 k bx 100 cdr04bx823a--- 82,000 k bx 50 cdr04bx104a--- 100,000 k,m bx 50 cdr04bx124a--- 120,000 k bx 50 cdr04bx154a--- 150,000 k,m bx 50 cdr04bx184a--- 180,000 k bx 50 avx style 1825/cdr05 cdr05bp392b--- 3900 j,k bp 100 cdr05bp472b--- 4700 j,k bp 100 cdr05bp562b--- 5600 j,k bp 100 cdr05bx683b--- 68,000 k,m bx 100 cdr05bx823b--- 82,000 k bx 100 cdr05bx104b--- 100,000 k,m bx 100 cdr05bx124b--- 120,000 k bx 100 cdr05bx154b--- 150,000 k,m bx 100 cdr05bx224a--- 220,000 k,m bx 50 cdr05bx274a--- 270,000 k bx 50 cdr05bx334a--- 330,000 k,m bx 50 avx style 2225/cdr06 cdr06bp682b--- 6800 j,k bp 100 cdr06bp822b--- 8200 j,k bp 100 cdr06bp103b--- 10,000 j,k bp 100 cdr06bx394a--- 390,000 k bx 50 cdr06bx474a--- 470,000 k,m bx 50 add appropriate failure rate add appropriate termination finish capacitance tolerance
79 mil-prf-55681/chips part number example cdr31 thru cdr35 t w l d t military designation per mil-prf-55681 part number example (example) cdr31 bp 101 b k s m mil style voltage-temperature limits capacitance rated voltage capacitance tolerance termination finish failure rate mil style: cdr31, cdr32, cdr33, cdr34, cdr35 voltage temperature limits: bp = 0 30 ppm/c without voltage; 0 30 ppm/c with rated voltage from -55c to +125c bx = 15% without voltage; +15 ?25% with rated voltage from -55c to +125c capacitance: two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pf rated voltage: a = 50v, b = 100v capacitance tolerance: b .10 pf, c .25 pf, d .5 pf, f 1%, j 5%, k 10%, m 20% termination finish: m = palladium silver u = base metallization/barrier n = silver nickel gold metal/solder coated* s = solder-coated w = base metallization/barrier y = 100% tin metal/tinned (tin or tin/ lead alloy) *solder shall have a melting point of 200c or less. failure rate level: m = 1.0%, p = .1%, r = .01%, s = .001% packaging: bulk is standard packaging. tape and reel per rs481 is available upon request. per mil-prf-55681 avx length (l) width (w) thickness (t) d termination band (t) (metric sizes) style (mm) (mm) max. (mm) min. (mm) max. (mm) min. (mm) cdr31 0805 2.00 1.25 1.3 .50 .70 .30 cdr32 1206 3.20 1.60 1.3 ? .70 .30 cdr33 1210 3.20 2.50 1.5 ? .70 .30 cdr34 1812 4.50 3.20 1.5 ? .70 .30 cdr35 1825 4.50 6.40 1.5 ? .70 .30 note: contact factory for availability of termination and tolerance options for specific part numbers. cross reference: avx/mil-prf-55681/cdr31 thru cdr35
80 mil-prf-55681/chips military part number identification cdr31 cdr31 to mil-prf-55681/7 military rated temperature wvdc type capacitance capacitance and voltage- designation 1 / in pf tolerance temperature limits avx style 0805/cdr31 (bp) cdr31bp1r0b--- 1.0 b,c bp 100 cdr31bp1r1b--- 1.1 b,c bp 100 cdr31bp1r2b--- 1.2 b,c bp 100 cdr31bp1r3b--- 1.3 b,c bp 100 cdr31bp1r5b--- 1.5 b,c bp 100 cdr31bp1r6b--- 1.6 b,c bp 100 cdr31bp1r8b--- 1.8 b,c bp 100 cdr31bp2r0b--- 2.0 b,c bp 100 cdr31bp2r2b--- 2.2 b,c bp 100 cdr31bp2r4b--- 2.4 b,c bp 100 cdr31bp2r7b--- 2.7 b,c,d bp 100 cdr31bp3r0b--- 3.0 b,c,d bp 100 cdr31bp3r3b--- 3.3 b,c,d bp 100 cdr31bp3r6b--- 3.6 b,c,d bp 100 cdr31bp3r9b--- 3.9 b,c,d bp 100 cdr31bp4r3b--- 4.3 b,c,d bp 100 cdr31bp4r7b--- 4.7 b,c,d bp 100 cdr31bp5r1b--- 5.1 b,c,d bp 100 cdr31bp5r6b--- 5.6 b,c,d bp 100 cdr31bp6r2b--- 6.2 b,c,d bp 100 cdr31bp6r8b--- 6.8 b,c,d bp 100 cdr31bp7r5b--- 7.5 b,c,d bp 100 cdr31bp8r2b--- 8.2 b,c,d bp 100 cdr31bp9r1b--- 9.1 b,c,d bp 100 cdr31bp100b--- 10 f,j,k bp 100 cdr31bp110b--- 11 f,j,k bp 100 cdr31bp120b--- 12 f,j,k bp 100 cdr31bp130b--- 13 f,j,k bp 100 cdr31bp150b--- 15 f,j,k bp 100 cdr31bp160b--- 16 f,j,k bp 100 cdr31bp180b--- 18 f,j,k bp 100 cdr31bp200b--- 20 f,j,k bp 100 cdr31bp220b--- 22 f,j,k bp 100 cdr31bp240b--- 24 f,j,k bp 100 cdr31bp270b--- 27 f,j,k bp 100 cdr31bp300b--- 30 f,j,k bp 100 cdr31bp330b--- 33 f,j,k bp 100 cdr31bp360b--- 36 f,j,k bp 100 cdr31bp390b--- 39 f,j,k bp 100 cdr31bp430b--- 43 f,j,k bp 100 cdr31bp470b--- 47 f,j,k bp 100 cdr31bp510b--- 51 f,j,k bp 100 cdr31bp560b--- 56 f,j,k bp 100 cdr31bp620b--- 62 f,j,k bp 100 cdr31bp680b--- 68 f,j,k bp 100 cdr31bp750b--- 75 f,j,k bp 100 cdr31bp820b--- 82 f,j,k bp 100 cdr31bp910b--- 91 f,j,k bp 100 military rated temperature wvdc type capacitance capacitance and voltage- designation 1 / in pf tolerance temperature limits avx style 0805/cdr31 (bp) cont?d cdr31bp101b--- 100 f,j,k bp 100 cdr31bp111b--- 110 f,j,k bp 100 cdr31bp121b--- 120 f,j,k bp 100 cdr31bp131b--- 130 f,j,k bp 100 cdr31bp151b--- 150 f,j,k bp 100 cdr31bp161b--- 160 f,j,k bp 100 cdr31bp181b--- 180 f,j,k bp 100 cdr31bp201b--- 200 f,j,k bp 100 cdr31bp221b--- 220 f,j,k bp 100 cdr31bp241b--- 240 f,j,k bp 100 cdr31bp271b--- 270 f,j,k bp 100 cdr31bp301b--- 300 f,j,k bp 100 cdr31bp331b--- 330 f,j,k bp 100 cdr31bp361b--- 360 f,j,k bp 100 cdr31bp391b--- 390 f,j,k bp 100 cdr31bp431b--- 430 f,j,k bp 100 cdr31bp471b--- 470 f,j,k bp 100 cdr31bp511a--- 510 f,j,k bp 50 cdr31bp561a--- 560 f,j,k bp 50 cdr31bp621a--- 620 f,j,k bp 50 cdr31bp681a--- 680 f,j,k bp 50 avx style 0805/cdr31 (bx) cdr31bx471b--- 470 k,m bx 100 cdr31bx561b--- 560 k,m bx 100 cdr31bx681b--- 680 k,m bx 100 cdr31bx821b--- 820 k,m bx 100 cdr31bx102b--- 1,000 k,m bx 100 cdr31bx122b--- 1,200 k,m bx 100 cdr31bx152b--- 1,500 k,m bx 100 cdr31bx182b--- 1,800 k,m bx 100 cdr31bx222b--- 2,200 k,m bx 100 cdr31bx272b--- 2,700 k,m bx 100 cdr31bx332b--- 3,300 k,m bx 100 cdr31bx392b--- 3,900 k,m bx 100 cdr31bx472b--- 4,700 k,m bx 100 cdr31bx562a--- 5,600 k,m bx 50 cdr31bx682a--- 6,800 k,m bx 50 cdr31bx822a--- 8,200 k,m bx 50 cdr31bx103a--- 10,000 k,m bx 50 cdr31bx123a--- 12,000 k,m bx 50 cdr31bx153a--- 15,000 k,m bx 50 cdr31bx183a--- 18,000 k,m bx 50 1 / the complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. add appropriate failure rate add appropriate termination finish capacitance tolerance add appropriate failure rate add appropriate termination finish capacitance tolerance
81 mil-prf-55681/chips military part number identification cdr32 cdr32 to mil-prf-55681/8 military rated temperature wvdc type capacitance capacitance and voltage- designation 1 / in pf tolerance temperature limits avx style 1206/cdr32 (bp) cdr32bp1r0b--- 1.0 b,c bp 100 cdr32bp1r1b--- 1.1 b,c bp 100 cdr32bp1r2b--- 1.2 b,c bp 100 cdr32bp1r3b--- 1.3 b,c bp 100 cdr32bp1r5b--- 1.5 b,c bp 100 cdr32bp1r6b--- 1.6 b,c bp 100 cdr32bp1r8b--- 1.8 b,c bp 100 cdr32bp2r0b--- 2.0 b,c bp 100 cdr32bp2r2b--- 2.2 b,c bp 100 cdr32bp2r4b--- 2.4 b,c bp 100 cdr32bp2r7b--- 2.7 b,c,d bp 100 cdr32bp3r0b--- 3.0 b,c,d bp 100 cdr32bp3r3b--- 3.3 b,c,d bp 100 cdr32bp3r6b--- 3.6 b,c,d bp 100 cdr32bp3r9b--- 3.9 b,c,d bp 100 cdr32bp4r3b--- 4.3 b,c,d bp 100 cdr32bp4r7b--- 4.7 b,c,d bp 100 cdr32bp5r1b--- 5.1 b,c,d bp 100 cdr32bp5r6b--- 5.6 b,c,d bp 100 cdr32bp6r2b--- 6.2 b,c,d bp 100 cdr32bp6r8b--- 6.8 b,c,d bp 100 cdr32bp7r5b--- 7.5 b,c,d bp 100 cdr32bp8r2b--- 8.2 b,c,d bp 100 cdr32bp9r1b--- 9.1 b,c,d bp 100 cdr32bp100b--- 10 f,j,k bp 100 cdr32bp110b--- 11 f,j,k bp 100 cdr32bp120b--- 12 f,j,k bp 100 cdr32bp130b--- 13 f,j,k bp 100 cdr32bp150b--- 15 f,j,k bp 100 cdr32bp160b--- 16 f,j,k bp 100 cdr32bp180b--- 18 f,j,k bp 100 cdr32bp200b--- 20 f,j,k bp 100 cdr32bp220b--- 22 f,j,k bp 100 cdr32bp240b--- 24 f,j,k bp 100 cdr32bp270b--- 27 f,j,k bp 100 cdr32bp300b--- 30 f,j,k bp 100 cdr32bp330b--- 33 f,j,k bp 100 cdr32bp360b--- 36 f,j,k bp 100 cdr32bp390b--- 39 f,j,k bp 100 cdr32bp430b--- 43 f,j,k bp 100 cdr32bp470b--- 47 f,j,k bp 100 cdr32bp510b--- 51 f,j,k bp 100 cdr32bp560b--- 56 f,j,k bp 100 cdr32bp620b--- 62 f,j,k bp 100 cdr32bp680b--- 68 f,j,k bp 100 cdr32bp750b--- 75 f,j,k bp 100 cdr32bp820b--- 82 f,j,k bp 100 cdr32bp910b--- 91 f,j,k bp 100 military rated temperature wvdc type capacitance capacitance and voltage- designation 1 / in pf tolerance temperature limits avx style 1206/cdr32 (bp) cont?d cdr32bp101b--- 100 f,j,k bp 100 cdr32bp111b--- 110 f,j,k bp 100 cdr32bp121b--- 120 f,j,k bp 100 cdr32bp131b--- 130 f,j,k bp 100 cdr32bp151b--- 150 f,j,k bp 100 cdr32bp161b--- 160 f,j,k bp 100 cdr32bp181b--- 180 f,j,k bp 100 cdr32bp201b--- 200 f,j,k bp 100 cdr32bp221b--- 220 f,j,k bp 100 cdr32bp241b--- 240 f,j,k bp 100 cdr32bp271b--- 270 f,j,k bp 100 cdr32bp301b--- 300 f,j,k bp 100 cdr32bp331b--- 330 f,j,k bp 100 cdr32bp361b--- 360 f,j,k bp 100 cdr32bp391b--- 390 f,j,k bp 100 cdr32bp431b--- 430 f,j,k bp 100 cdr32bp471b--- 470 f,j,k bp 100 cdr32bp511b--- 510 f,j,k bp 100 cdr32bp561b--- 560 f,j,k bp 100 cdr32bp621b--- 620 f,j,k bp 100 cdr32bp681b--- 680 f,j,k bp 100 cdr32bp751b--- 750 f,j,k bp 100 cdr32bp821b--- 820 f,j,k bp 100 cdr32bp911b--- 910 f,j,k bp 100 cdr32bp102b--- 1,000 f,j,k bp 100 cdr32bp112a--- 1,100 f,j,k bp 50 cdr32bp122a--- 1,200 f,j,k bp 50 cdr32bp132a--- 1,300 f,j,k bp 50 cdr32bp152a--- 1,500 f,j,k bp 50 cdr32bp162a--- 1,600 f,j,k bp 50 cdr32bp182a--- 1,800 f,j,k bp 50 cdr32bp202a--- 2,000 f,j,k bp 50 cdr32bp222a--- 2,200 f,j,k bp 50 avx style 1206/cdr32 (bx) cdr32bx472b--- 4,700 k,m bx 100 cdr32bx562b--- 5,600 k,m bx 100 cdr32bx682b--- 6,800 k,m bx 100 cdr32bx822b--- 8,200 k,m bx 100 cdr32bx103b--- 10,000 k,m bx 100 cdr32bx123b--- 12,000 k,m bx 100 cdr32bx153b--- 15,000 k,m bx 100 cdr32bx183a--- 18,000 k,m bx 50 cdr32bx223a--- 22,000 k,m bx 50 cdr32bx273a--- 27,000 k,m bx 50 cdr32bx333a--- 33,000 k,m bx 50 cdr32bx393a--- 39,000 k,m bx 50 1 / the complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. add appropriate failure rate add appropriate termination finish capacitance tolerance add appropriate failure rate add appropriate termination finish capacitance tolerance
82 mil-prf-55681/chips military part number identification cdr33/34/35 cdr33/34/35 to mil-prf-55681/9/10/11 military rated temperature wvdc type capacitance capacitance and voltage- designation 1 / in pf tolerance temperature limits avx style 1210/cdr33 (bp) cdr33bp102b--- 1,000 f,j,k bp 100 cdr33bp112b--- 1,100 f,j,k bp 100 cdr33bp122b--- 1,200 f,j,k bp 100 cdr33bp132b--- 1,300 f,j,k bp 100 cdr33bp152b--- 1,500 f,j,k bp 100 cdr33bp162b--- 1,600 f,j,k bp 100 cdr33bp182b--- 1,800 f,j,k bp 100 cdr33bp202b--- 2,000 f,j,k bp 100 cdr33bp222b--- 2,200 f,j,k bp 100 cdr33bp242a--- 2,400 f,j,k bp 50 cdr33bp272a--- 2,700 f,j,k bp 50 cdr33bp302a--- 3,000 f,j,k bp 50 cdr33bp332a--- 3,300 f,j,k bp 50 avx style 1210/cdr33 (bx) cdr33bx153b--- 15,000 k,m bx 100 cdr33bx183b--- 18,000 k,m bx 100 cdr33bx223b--- 22,000 k,m bx 100 cdr33bx273b--- 27,000 k,m bx 100 cdr33bx393a--- 39,000 k,m bx 50 cdr33bx473a--- 47,000 k,m bx 50 cdr33bx563a--- 56,000 k,m bx 50 cdr33bx683a--- 68,000 k,m bx 50 cdr33bx823a--- 82,000 k,m bx 50 cdr33bx104a--- 100,000 k,m bx 50 avx style 1812/cdr34 (bp) cdr34bp222b--- 2,200 f,j,k bp 100 cdr34bp242b--- 2,400 f,j,k bp 100 cdr34bp272b--- 2,700 f,j,k bp 100 cdr34bp302b--- 3,000 f,j,k bp 100 cdr34bp332b--- 3,300 f,j,k bp 100 cdr34bp362b--- 3,600 f,j,k bp 100 cdr34bp392b--- 3,900 f,j,k bp 100 cdr34bp432b--- 4,300 f,j,k bp 100 cdr34bp472b--- 4,700 f,j,k bp 100 cdr34bp512a--- 5,100 f,j,k bp 50 cdr34bp562a--- 5,600 f,j,k bp 50 cdr34bp622a--- 6,200 f,j,k bp 50 cdr34bp682a--- 6,800 f,j,k bp 50 cdr34bp752a--- 7,500 f,j,k bp 50 cdr34bp822a--- 8,200 f,j,k bp 50 cdr34bp912a--- 9,100 f,j,k bp 50 cdr34bp103a--- 10,000 f,j,k bp 50 military rated temperature wvdc type capacitance capacitance and voltage- designation 1 / in pf tolerance temperature limits avx style 1812/cdr34 (bx) cdr34bx273b--- 27,000 k,m bx 100 cdr34bx333b--- 33,000 k,m bx 100 cdr34bx393b--- 39,000 k,m bx 100 cdr34bx473b--- 47,000 k,m bx 100 cdr34bx563b--- 56,000 k,m bx 100 cdr34bx104a--- 100,000 k,m bx 50 cdr34bx124a--- 120,000 k,m bx 50 cdr34bx154a--- 150,000 k,m bx 50 cdr34bx184a--- 180,000 k,m bx 50 avx style 1825/cdr35 (bp) cdr35bp472b--- 4,700 f,j,k bp 100 cdr35bp512b--- 5,100 f,j,k bp 100 cdr35bp562b--- 5,600 f,j,k bp 100 cdr35bp622b--- 6,200 f,j,k bp 100 cdr35bp682b--- 6,800 f,j,k bp 100 cdr35bp752b--- 7,500 f,j,k bp 100 cdr35bp822b--- 8,200 f,j,k bp 100 cdr35bp912b--- 9,100 f,j,k bp 100 cdr35bp103b--- 10,000 f,j,k bp 100 cdr35bp113a--- 11,000 f,j,k bp 50 cdr35bp123a--- 12,000 f,j,k bp 50 cdr35bp133a--- 13,000 f,j,k bp 50 cdr35bp153a--- 15,000 f,j,k bp 50 cdr35bp163a--- 16,000 f,j,k bp 50 cdr35bp183a--- 18,000 f,j,k bp 50 cdr35bp203a--- 20,000 f,j,k bp 50 cdr35bp223a--- 22,000 f,j,k bp 50 avx style 1825/cdr35 (bx) cdr35bx563b--- 56,000 k,m bx 100 cdr35bx683b--- 68,000 k,m bx 100 cdr35bx823b--- 82,000 k,m bx 100 cdr35bx104b--- 100,000 k,m bx 100 cdr35bx124b--- 120,000 k,m bx 100 cdr35bx154b--- 150,000 k,m bx 100 cdr35bx184a--- 180,000 k,m bx 50 cdr35bx224a--- 220,000 k,m bx 50 cdr35bx274a--- 270,000 k,m bx 50 cdr35bx334a--- 330,000 k,m bx 50 cdr35bx394a--- 390,000 k,m bx 50 cdr35bx474a--- 470,000 k,m bx 50 1 / the complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. add appropriate failure rate add appropriate termination finish capacitance tolerance add appropriate failure rate add appropriate termination finish capacitance tolerance
83 packaging of chip components automatic insertion packaging tape & reel quantities all tape and reel specifications are in compliance with rs481. 8mm 12mm paper or embossed carrier 0612, 0508, 0805, 1206, 1210 embossed only 1812, 1825 1808 2220, 2225 paper only 0201, 0306, 0402, 0603 qty. per reel/7" reel 2,000, 3,000 or 4,000, 10,000, 15,000 3,000 500, 1,000 contact factory for exact quantity contact factory for exact quantity qty. per reel/13" reel 5,000, 10,000, 50,000 10,000 4,000 contact factory for exact quantity reel dimensions ta p e a b * c d* n w 1 w 2 w 3 size (1) max. min. min. min. max. 7.90 min. 8mm 14.4 (0.311) (0.567) 10.9 max. 330 1.5 20.2 50.0 (0.429) (12.992) (0.059) (0.795) (1.969) 11.9 min. 12mm 18.4 (0.469) (0.724) 15.4 max. (0.607) metric dimensions will govern. english measurements rounded and for reference only. (1) for tape sizes 16mm and 24mm (used with chip size 3640) consult eia rs-481 latest revision. 13.0 +0.50 -0.20 (0.512 +0.020 ) -0.008 8.40 +1.5 -0.0 (0.331 +0.059 ) -0.0 12.4 +2.0 -0.0 (0.488 +0.079 ) -0.0
84 tape size b 1 d 1 e 2 fp 1 rt 2 wa 0 b 0 k 0 max. min. min. min. max. see note 5 see note 2 8mm 4.35 1.00 6.25 3.50 0.05 4.00 0.10 25.0 2.50 max. 8.30 see note 1 (0.171) (0.039) (0.246) (0.138 0.002) (0.157 0.004) (0.984) (0.098) (0.327) 12mm 8.20 1.50 10.25 5.50 0.05 4.00 0.10 30.0 6.50 max. 12.3 see note 1 (0.323) (0.059) (0.404) (0.217 0.002) (0.157 0.004) (1.181) (0.256) (0.484) 8mm 4.35 1.00 6.25 3.50 0.05 2.00 0.10 25.0 2.50 max. 8.30 see note 1 1/2 pitch (0.171) (0.039) (0.246) (0.138 0.002) (0.079 0.004) (0.984) (0.098) (0.327) 12mm 8.20 1.50 10.25 5.50 0.05 8.00 0.10 30.0 6.50 max. 12.3 see note 1 double (0.323) (0.059) (0.404) (0.217 0.002) (0.315 0.004) (1.181) (0.256) (0.484) pitch embossed carrier configuration 8 & 12mm tape only p 0 b 0 p 1 p 2 d 0 t 2 t top cover tape deformation between embossments center lines of cavity max. cavity size - see note 1 d 1 for components 2.00 mm x 1.20 mm and larger (0.079 x 0.047) 10 pitches cumulative tolerance on tape 0.2mm ( 0.008) b 1 e 1 f embossment user direction of feed e 2 w k 0 t 1 s 1 a 0 b 1 is for tape reader reference only including draft concentric around b 0 8 & 12mm embossed tape metric dimensions will govern constant dimensions variable dimensions notes: 1. the cavity defined by a 0 , b 0 , and k 0 shall be configured to provide the following: surround the component with sufficient clearance such that: a) the component does not protrude beyond the sealing plane of the cover tape. b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed. c) rotation of the component is limited to 20o maximum (see sketches d & e). d) lateral movement of the component is restricted to 0.5mm maximum (see sketch f). 2. tape with or without components shall pass around radius ?r? without damage. 3. bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. refer to eia-556. 4. b 1 dimension is a reference dimension for tape feeder clearance only. 5. if p 1 = 2.0mm, the tape may not properly index in all tape feeders. tape size d 0 ep 0 p 2 s 1 min. t max. t 1 8mm 1.75 0.10 4.0 0.10 2.0 0.05 0.60 0.60 0.10 and (0.069 0.004) (0.157 0.004) (0.079 0.002) (0.024) (0.024) (0.004) 12mm max. 0.50mm (0.020) maximum 0.50mm (0.020) maximum top view, sketch "f" component lateral movements 1.50 +0.10 -0.0 (0.059 +0.004 ) -0.0 chip orientation
85 tape size p 1 e 2 min. f w a 0 b 0 t see note 4 8mm 4.00 0.10 6.25 3.50 0.05 see note 1 (0.157 0.004) (0.246) (0.138 0.002) 12mm 4.00 0.010 10.25 5.50 0.05 12.0 0.30 (0.157 0.004) (0.404) (0.217 0.002) (0.472 0.012) 8mm 2.00 0.05 6.25 3.50 0.05 1/2 pitch (0.079 0.002) (0.246) (0.138 0.002) 12mm 8.00 0.10 10.25 5.50 0.05 12.0 0.30 double (0.315 0.004) (0.404) (0.217 0.002) (0.472 0.012) pitch paper carrier configuration 8 & 12mm tape only p 0 b 0 p 1 p 2 d 0 t top cover tape bottom cover tape center lines of cavity cavity size see note 1 10 pitches cumulative tolerance on tape 0.20mm ( 0.008) e 1 f g user direction of feed e 2 w t 1 t 1 a 0 8 & 12mm paper tape metric dimensions will govern constant dimensions tape size d 0 ep 0 p 2 t 1 g. min. r min. 8mm 1.75 0.10 4.00 0.10 2.00 0.05 0.10 0.75 25.0 (0.984) and (0.069 0.004) (0.157 0.004) (0.079 0.002) (0.004) (0.030) see note 2 12mm max. min. min. variable dimensions 1.10mm (0.043) max. for paper base tape and 1.60mm (0.063) max. for non-paper base compositions notes: 1. the cavity defined by a 0 , b 0 , and t shall be configured to provide sufficient clearance surrounding the component so that: a) the component does not protrude beyond either surface of the carrier tape; b) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed; c) rotation of the component is limited to 20o maximum (see sketches a & b); d) lateral movement of the component is restricted to 0.5mm maximum (see sketch c). 2. tape with or without components shall pass around radius ?r? without damage. 3. bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. refer to eia-556. 4. if p 1 = 2.0mm, the tape may not properly index in all tape feeders. 0.50mm (0.020) maximum 0.50mm (0.020) maximum top view, sketch "c" component lateral 1.50 +0.10 -0.0 (0.059 +0.004 ) -0.0 8.00 +0.30 -0.10 (0.315 +0.012 ) -0.004 8.00 +0.30 -0.10 (0.315 +0.012 ) -0.004 bar code labeling standard avx bar code labeling is available and follows latest version of eia-556
86 bulk case packaging case quantities part size 0402 0603 0805 1206 qty. 10,000 (t=.023") 5,000 (t=.023") (pcs / cassette) 80,000 15,000 8,000 (t=.031") 4,000 (t=.032") 6,000 (t=.043") 3,000 (t=.044") benefits bulk feeder ? easier handling ? smaller packaging volume (1/20 of t/r packaging) ? easier inventory control ? flexibility ? recyclable case dimensions shutter slider attachment base 110mm 12mm 36mm case cassette gate shooter chips expanded drawing mounter head
87 i. capacitance (farads) english: c = .224 k a t d metric: c = .0884 k a t d ii. energy stored in capacitors (joules, watt - sec) e = 1 M 2 cv 2 iii. linear charge of a capacitor (amperes) i = c dv dt iv. total impedance of a capacitor (ohms) z = r 2 s + (x c - x l ) 2 v. capacitive reactance (ohms) x c = 1 2 fc vi. inductive reactance (ohms) x l = 2 fl vii. phase angles: ideal capacitors: current leads voltage 90 ideal inductors: current lags voltage 90 ideal resistors: current in phase with voltage viii. dissipation factor (%) d.f.= tan  (loss angle) = e.s.r. = (2 fc) (e.s.r.) x c ix. power factor (%) p.f. = sine  (loss angle) = cos f (phase angle) p.f. = (when less than 10%) = df x. quality factor (dimensionless) q = cotan  (loss angle) = 1 d.f. xi. equivalent series resistance (ohms) e.s.r. = (d.f.) (xc) = (d.f.) / (2 fc) xii. power loss (watts) power loss = (2 fcv 2 ) (d.f.) xiii. kva (kilowatts) kva = 2 fcv 2 x 10 -3 xiv. temperature characteristic (ppm/c) t.c. = ct ? c 25 x 10 6 c 25 (t t ? 25) xv. cap drift (%) c.d. = c 1 ? c 2 x 100 c 1 xvi. reliability of ceramic capacitors l 0 = v t xt t y l t ( v o )( t o ) xvii. capacitors in series (current the same) any number: 1 = 1 + 1 --- 1 c t c 1 c 2 c n c 1 c 2 two: c t = c 1 + c 2 xviii. capacitors in parallel (voltage the same) c t = c 1 + c 2 --- + c n xix. aging rate a.r. = % d c/decade of time xx. decibels db = 20 log v 1 v 2  pico x 10 -12 nano x 10 -9 micro x 10 -6 milli x 10 -3 deci x 10 -1 deca x 10 +1 kilo x 10 +3 mega x 10 +6 giga x 10 +9 tera x 10 +12 k = dielectric constant f = frequency l t = test life a = area l = inductance v t = test voltage t d = dielectric thickness  = loss angle v o = operating voltage v = voltage f = phase angle t t = test temperature t = time x & y = exponent effect of voltage and temp. t o = operating temperature r s = series resistance l o = operating life metric prefixes symbols basic capacitor formulas
88 general description formulations ? multilayer ceramic capacitors are available in both class 1 and class 2 formulations. temperature compensating formulation are class 1 and temperature stable and general application formulations are classified as class 2. class 1 ? class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. they have predictable temperature coefficients and in general, do not have an aging characteristic. thus they are the most stable capacitor available. the most popular class 1 multilayer ceramic capacitors are c0g (np0) temperature compensating capacitors (negative-positive 0 ppm/c). class 2 ? eia class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. the most commonly used class 2 dielectrics are x7r and y5v. the x7r provides intermediate capacitance values which vary only 15% over the temperature range of -55c to 125c. it finds applications where stability over a wide temperature range is required. the y5v provides the highest capacitance values and is used in applications where limited temperature changes are expected. the capacitance value for y5v can vary from 22% to -82% over the -30c to 85c temperature range. all class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both ac and dc), and frequency. for additional information on performance changes with operating conditions, consult avx?s software, spicap. basic construction ? a multilayer ceramic (mlc) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. this simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in today?s electronic equipment. ceramic layer electrode terminated edge terminated edge end terminations margin electrodes multilayer ceramic capacitor figure 1
89 in specifying capacitance change with temperature for class 2 materials, eia expresses the capacitance change over an operating temperature range by a 3 symbol code. the first symbol represents the cold temperature end of the tempera- ture range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temper- ature range. table 1 provides a detailed explanation of the eia system. effects of voltage ? variations in voltage have little effect on class 1 dielectric but does affect the capacitance and dissipation factor of class 2 dielectrics. the application of dc voltage reduces both the capacitance and dissipation factor while the application of an ac voltage within a reasonable range tends to increase both capacitance and dissipation |factor readings. if a high enough ac voltage is applied, eventually it will reduce capacitance just as a dc voltage will. figure 2 shows the effects of ac voltage. capacitor specifications specify the ac voltage at which to measure (normally 0.5 or 1 vac) and application of the wrong voltage can cause spurious readings. figure 3 gives the volt- age coefficient of dissipation factor for various ac voltages at 1 kilohertz. applications of different frequencies will affect the percentage changes versus voltages. typical effect of the application of dc voltage is shown in figure 4. the voltage coefficient is more pronounced for higher k dielectrics. these figures are shown for room tem- perature conditions. the combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in figure 5 for the military bx characteristic. general description figure 2 50 40 30 20 10 0 12.5 25 37.5 50 volts ac at 1.0 khz capacitance change percent cap. change vs. a.c. volts x7r figure 3 curve 3 - 25 vdc rated capacitor curve 2 - 50 vdc rated capacitor curve 1 - 100 vdc rated capacitor curve 3 curve 2 curve 1 .5 1.0 1.5 2.0 2.5 ac measurement volts at 1.0 khz dissipation factor percent 10.0 8.0 6.0 4.0 2.0 0 d.f. vs. a.c. measurement volts x7r eia code percent capacity change over temperature range rs198 temperature range x7 -55c to +125c x6 -55c to +105c x5 -55c to +85c y5 -30c to +85c z5 +10c to +85c code percent capacity change d 3.3% e 4.7% f 7.5% p 10% r 15% s 22% t +22%, -33% u +22%, - 56% v +22%, -82% mi l code symbol temperature range a -55c to +85c b -55c to +125c c -55c to +150c symbol cap. change cap. change zero volts rated volts r +15%, -15% +15%, -40% s +22%, -22% +22%, -56% w +22%, -56% +22%, -66% x +15%, -15% +15%, -25% y +30%, -70% +30%, -80% z +20%, -20% +20%, -30% table 1: eia and mil temperature stable and general application codes example ? a capacitor is desired with the capacitance value at 25c to increase no more than 7.5% or decrease no more than 7.5% from -30c to +85c. eia code will be y5f. temperature characteristic is specified by combining range and change symbols, for example br or aw. specification slash sheets indicate the characteristic applicable to a given style of capacitor.
90 general description typical cap. change vs. d.c. volts x7r typical cap. change vs. temperature x7r effects of time ? class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. this change with time is known as aging. aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. a typical curve of aging rate for semistable ceramics is shown in figure 6. if a class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125c for 4 hours or 150c for 1 M 2 hour will suffice) the part will de-age and return to its initial capacitance and dissi -pation factor readings. because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. various manufacturers use different time bases but the most popular one is one day or twenty-four hours after ?last heat.? change in the aging curve can be caused by the application of voltage and other stresses. the possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in mil specs. the application of high voltages such as dielectric withstanding voltages also te nds to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed. effects of frequency ? frequency affects capacitance and impedance characteristics of capacitors. this effect is much more pronounced in high dielectric constant ceramic formulation than in low k formulations. avx?s spicap software generates impedance, esr, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and dc bias for standard chip sizes and styles. it is available free from avx and can be downloaded for free from avx website: www.avx.com. 25% 50% 75% 100% percent rated volts capacitance change percent 5 0 -5 -10 -15 -20 0vdc -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 temperature degrees centigrade capacitance change percent +20 +10 0 -10 -20 -30 figure 4 figure 5 1 10 100 1000 10,000 100,000 hours capacitance change percent +1.5 0 -1.5 -3.0 -4.5 -6.0 -7.5 characteristic max. aging rate %/decade c0g (np0) x7r, x5r y5v none 2 7 figure 6 typical curve of aging rate x7r
91 effects of mechanical stress ? high ?k? dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. as a general statement, the piezo- electric output is higher, the higher the dielectric constant of the ceramic. it is desirable to investigate this effect before using high ?k? dielectrics as coupling capacitors in extremely low level applications. reliability ? historically ceramic capacitors have been one of the most reliable types of capacitors in use today. the approximate formula for the reliability of a ceramic capacitor is: l o = v t x t t y l t v o t o where l o = operating life t t = test temperature and l t = test life t o = operating temperature v t = test voltage in c v o = operating voltage x,y = see text historically for ceramic capacitors exponent x has been considered as 3. the exponent y for temperature effects typically tends to run about 8. a capacitor is a component which is capable of storing electrical energy. it consists of two conductive plates (elec- trodes) separated by insulating material which is called the dielectric. a typical formula for determining capacitance is: c = .224 ka t c = capacitance (picofarads) k = dielectric constant (vacuum = 1) a = area in square inches t = separation between the plates in inches (thickness of dielectric) .224 = conversion constant (.0884 for metric system in cm) capacitance ? the standard unit of capacitance is the farad. a capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. one farad is a very large unit and most capacitors have values in the micro (10 -6 ), nano (10 -9 ) or pico (10 -12 ) farad level. dielectric constant ? in the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. dielectric constants of other materials are then compared to the dielectric constant of a vacuum. dielectric thickness ? capacitance is indirectly proportional to the separation between electrodes. lower voltage require- ments mean thinner dielectrics and greater capacitance per volume. area ? capacitance is directly proportional to the area of the electrodes. since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group. energy stored ? the energy which can be stored in a capacitor is given by the formula: e = 1 M 2 cv 2 e = energy in joules (watts-sec) v = applied voltage c = capacitance in farads potential change ? a capacitor is a reactive component which reacts against a change in potential across it. this is shown by the equation for the linear charge of a capacitor: i ideal = c dv dt where i = current c = capacitance dv/dt = slope of voltage transition across capacitor thus an infinite current would be required to instantly change the potential across a capacitor. the amount of current a capacitor can ?sink? is determined by the above equation. equivalent circuit ? a capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. a simplified schematic for the equivalent circuit is: c = capacitance l = inductance r s = series resistance r p = parallel resistance reactance ? since the insulation resistance (r p ) is nor- mally very high, the total impedance of a capacitor is: z = r 2 s + (x c - x l ) 2 where z = total impedance r s = series resistance x c = capacitive reactance = 1 2 fc x l = inductive reactance = 2 fl the variation of a capacitor?s impedance with frequency determines its effectiveness in many applications. phase angle ? power factor and dissipation factor are often confused since they are both measures of the loss in a capacitor under ac application and are often almost identical in value. in a ?perfect? capacitor the current in the capacitor will lead the voltage by 90.     general description r l r c p s 
92 general description in practice the current leads the voltage by some other phase angle due to the series resistance r s . the complement of this angle is called the loss angle and: power factor (p.f.) = cos f or sine  dissipation factor (d.f.) = tan  for small values of  the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry. equivalent series resistance ? the term e.s.r. or equivalent series resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple r-c series connection. dissipation factor ? the df/pf of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor. dissipation factor = e.s.r. = (2 fc) (e.s.r.) x c the watts loss are: watts loss = (2 fcv 2 ) (d.f.) very low values of dissipation factor are expressed as their reciprocal for convenience. these are called the ?q? or quality factor of capacitors. parasitic inductance ? the parasitic inductance of capacitors is becoming more and more important in the decoupling of today?s high speed digital systems. the relationship between the inductance and the ripple voltage induced on the dc voltage line can be seen from the simple inductance equation: v = l di dt the seen in current microprocessors can be as high as 0.3 a/ns, and up to 10a/ns. at 0.3 a/ns, 100ph of parasitic inductance can cause a voltage spike of 30mv. while this does not sound very drastic, with the vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage. another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. this can be important for high frequency, by- pass capacitors, as the resonant point will give the most signal attenuation. the resonant frequency is calculated from the simple equation: f res = 1 2  lc insulation resistance ? insulation resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance r p shown in the equivalent circuit. as capacitance values and hence the area of dielectric increases, the i.r. decreases and hence the product (c x ir or rc) is often specified in ohm farads or more commonly megohm-microfarads. leakage current is determined by dividing the rated voltage by ir (ohm?s law). dielectric strength ? dielectric strength is an expression of the ability of a material to withstand an electrical stress. although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil. dielectric absorption ? a capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. it is common practice to measure the dielectric absorption by determining the ?reappearing voltage? which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions. corona ? corona is the ionization of air or other vapors which causes them to conduct current. it is especially prevalent in high voltage uni ts but can occur with low volt ages as well where high voltage gradients occur. the energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures. di dt  i (ideal) i (actual) phase angle loss angle v ir s f e.s.r. c 
93 surface mounting guide mlc chip capacitors component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. the basis of these designs is: ? pad width equal to component width. it is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this. ? pad overlap 0.5mm beneath component. ? pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering. d1 d2 d3 d4 d5 case size d1 d2 d3 d4 d5 0201 0.85 (0.033) 0.30 (0.012) 0.25 (0.010) 0.30 (0.012) 0.35 (0.014) 0402 1.70 (0.067) 0.60 (0.024) 0.50 (0.020) 0.60 (0.024) 0.50 (0.020) 0603 2.30 (0.091) 0.80 (0.031) 0.70 (0.028) 0.80 (0.031) 0.75 (0.030) 0805 3.00 (0.118) 1.00 (0.039) 1.00 (0.039) 1.00 (0.039) 1.25 (0.049) 1206 4.00 (0.157) 1.00 (0.039) 2.00 (0.079) 1.00 (0.039) 1.60 (0.063) 1210 4.00 (0.157) 1.00 (0.039) 2.00 (0.079) 1.00 (0.039) 2.50 (0.098) 1808 5.60 (0.220) 1.00 (0.039) 3.60 (0.142) 1.00 (0.039) 2.00 (0.079) 1812 5.60 (0.220) 1.00 (0.039) 3.60 (0.142) 1.00 (0.039) 3.00 (0.118) 1825 5.60 (0.220) 1.00 (0.039) 3.60 (0.142) 1.00 (0.039) 6.35 (0.250) 2220 6.60 (0.260) 1.00 (0.039) 4.60 (0.181) 1.00 (0.039) 5.00 (0.197) 2225 6.60 (0.260) 1.00 (0.039) 4.60 (0.181) 1.00 (0.039) 6.35 (0.250) dimensions in millimeters (inches) reflow soldering wave soldering component spacing for wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). this is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required. preheat & soldering the rate of preheat should not exceed 4c/second to prevent thermal shock. a better maximum figure is about 2c/second. for capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150c. in all other cases this differential should not exceed 100c. for further specific application or process advice, please consult avx. cleaning care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor. ultrasonic cleaning is permissible, the recommended conditions being 8 watts/litre at 20-45 khz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse. d1 d2 d3 d4 d5 case size d1 d2 d3 d4 d5 0603 3.10 (0.12) 1.20 (0.05) 0.70 (0.03) 1.20 (0.05) 0.75 (0.03) 0805 4.00 (0.15) 1.50 (0.06) 1.00 (0.04) 1.50 (0.06) 1.25 (0.05) 1206 5.00 (0.19) 1.50 (0.06) 2.00 (0.09) 1.50 (0.06) 1.60 (0.06) dimensions in millimeters (inches) 1mm (0.04) 1.5mm (0.06) 1mm (0.04) component pad design
94 surface mounting guide recommended soldering profiles recommended reflow profiles time / secs component temperature / oc 25 50 75 100 125 150 175 200 225 250 275 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 pb free recommended pb free max with care sn pb recommended reflow solder profiles avx rohs compliant products utilize termination finishes (e.g.sn or snag) that are compatible with all pb-free soldering systems and are fully reverse compatible with snpb soldering systems. a recommended snpb profile is shown for comparison; for pb-free soldering, ipc/jedecj- std-020c may be referenced. the upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260oc max). the center line gives the recommended profile for optimum wettability and soldering in pb-free systems. 25 75 125 175 225 275 0 50 100 150 200 250 300 350 400 p r e h e a t r e f l o w c o o l d o w n preheat p r e h e a t wave w a v e cool down c o o l d o w n component temperature / oc time / seconds recommended soldering profiles wave solder profiles for wave solder, there is no change in the recommended wave profile; all standard pb-free (sncu/sncuag) systems operate at the same 260oc max recommended for snpb systems. preheat: this is more important for wave solder; a higher temperature preheat will reduce the thermal shock to smd parts that are immersed (please consult individual product data sheets for smd parts that are suited to wave solder). smd parts should ideally be heated from the bottom-side prior to wave. pth (pin through hole) parts on the topside should not be separately heated. wave: 250oc ? 260oc recommended for optimum solderability. cool down: as with reflow solder, cool down should not be forced and 6oc/sec is recommended. any air knives at the end of the 2nd wave should be heated. preheat: the pre-heat stabilizes the part and reduces the temperature differential prior to reflow. the initial ramp to 125oc may be rapid, but from that point (2-3)oc/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180oc). reflow: in the reflow phase, the maximum recommended time > 230oc is 40secs. time at peak reflow is 10secs max.; optimum reflow is achieved at 250oc, (see wetting balance chart opposite) but products are qualified to 260oc max. please reference individual product datasheets for maximum limits cool down: cool down should not be forced and 6oc/sec is recommended. a slow cool down will result in a finer grain structure of the reflow solder in the solder fillet. important note: typical pb-free reflow solders have a more dull and grainy appearance compared to traditional snpb. elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint. -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 200 210 220 230 240 250 260 270 temperature of solder [c] f [mn] snpb - sn60pb40 sn - sn60pb40 sn-sn3.5ag0.7cu sn-sn2.5ag1bi0.5cu sn-sn0.7cu p r e h e a t r e f l o w c o o l d o w n p r e h e a t w a v e c o o l d o w n wetting force at 2nd sec. (higher is better)
95 surface mounting guide mlc chip capacitors application notes storage the components should be stored in their ?as received packaging? where possible. if the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). storage area temperature should be kept between +5 degrees c and +30 degrees c with humidity < 70% rh. storage atmosphere must be free of gas containing sulfur and chlorine. avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. to assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. chip capacitors may crack if exposed to hydrogen (h2) gas while sealed or if coated with silicon, which generates hydrogen gas. solderability terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 5c for 2 1 seconds. leaching terminations will resist leaching for at least the immersion times and conditions shown below. lead-free wave soldering the recommended peak temperature for lead-free wave soldering is 250c-260c for 3-5 seconds. the other parameters of the prof ile remains the same as above. the following should be noted by customers changing from lead based systems to the new lead free pastes. a) the visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large. b) lead-free solder pastes do not allow the same self alignment as lead containing systems. standard mounting pads are acceptable, but machine set up may need to be modified. general surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. the construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods. handling chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. the use of tweezers or vacuum pick ups is strongly recommended for individual components. bulk handling should ensure that abrasion and mechanical shock are minimized. taped and reeled components provides the ideal medium for direct presentation to the placement machine. any mechanical shock should be minimized during handling chip multilayer ceramic capacitors. preheat it is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. the rate of preheat should not exceed 4c/second and a target figure 2c/second is recommended. although an 80c to 120c temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temper-ature of 150c (maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. the user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases. soldering mildly activated rosin fluxes are preferred. the minimum amount of solder to give a good joint should be used. excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. avx terminations are suitable for all wave and reflow soldering systems. if hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. cooling natural cooling in air is preferred, as this minimizes stresses within the soldered joint. when forced air cooling is used, cooling rate should not exceed 4c/second. quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above. cleaning flux residues may be hygroscopic or acidic and must be removed. avx mlc capacitors are acceptable for use with all of the solvents described in the specifications mil-std- 202 and eia-rs-198. alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors. termination type solder solder immersion time tin/lead/silver temp. c seconds nickel barrier 60/40/0 260 5 30 1
96 surface mounting guide mlc chip capacitors post solder handling once smp components are soldered to the board, any bending or flexure of the pcb applies stresses to the soldered joints of the components. for leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don?t result in problems unless the stress is large enough to fracture the soldered connection. ceramic capacitors are more susceptible to such stress because they don?t have compliant leads and are brittle in nature. the most frequent failure mode is low dc resistance or short circuit. the second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes. cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms: mechanical cracks are often hidden underneath the termination and are difficult to see externally. however, if one end termination falls off during the removal process from pcb, this is one indication that the cause of failure was excessive mechanical stress due to board warping. type a: angled crack between bottom of device to top of solder joint. type b: fracture from top of device to bottom of device.
97 surface mounting guide mlc chip capacitors pcb board design to avoid many of the handling problems, avx recommends that mlcs be located at least .2" away from nearest edge of board. however when this is not possible, avx recommends that the panel be routed along the cut line, adjacent to where the mlc is located. solder tip solder tip preferred method - no direct part contact poor method - direct contact with part no stress relief for mlcs routed cut line relieves stress on mlc common causes of mechanical cracking the most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v- cutters and shear presses. improperly aligned or dull cutters may cause torqueing of the pcb resulting in flex stresses being transmitted to components near the board edge. another common source of flexural stress is contact during parametric testing when test points are probed. if the pcb is allowed to flex during the test cycle, nearby ceramic capacitors may be broken. a third common source is board to board connections at vertical connectors where cables or other pcbs are connected to the pcb. if the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components. special care should also be taken when handling large (>6" on a side) pcbs since they more easily flex or warp than smaller boards. reworking of mlcs thermal shock is common in mlcs that are manually attached or reworked with a soldering iron. avx strongly recommends that any reworking of mlcs be done with hot air reflow rather than soldering irons. it is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow. however direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. if rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300oc. rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.
s-mlcc0m409-c a kyocera group company http://www.avx.com c o n tact: avx myr t le be ach , sc te l : 843-448-9411 avx n o r thw es t , wa te l : 360-699-8746 avx mid w es t , in te l : 317-861-9184 avx mid / p ac ifi c , ca te l : 408-988-4900 avx n o r th e a s t , ma te l : 617-479-0345 avx s o u thw es t , ca te l : 949-859-9509 avx c a n a d a te l : 905-238-3151 avx s o u th a m eri ca te l : +55-11-4688-1960 avx li m i t ed, engl a nd te l : +44-1252-770000 avx s . a . s . , fr a n c e te l : +33-1-69-18-46-00 avx g m bh, ger ma ny te l : +49-8131-9004-0 avx srl, i ta ly te l : +39-02-614-571 avx cze ch re p ubli c te l : +420-57-57-57-521 avx / elco uk te l : +44-1638-675000 elco eur op e g m bh te l : +49-2741-299-0 avx s . a . , s pa in te l : +34-91-63-97-197 avx benelu x te l : +31-187-489-337 avx / ky oc er a (s) p t e l t d . , sing apo re te l : +65-6286-7555 avx / ky oc er a , asi a , l t d . , h o ng k o ng te l : +852-2363-3303 avx / ky oc er a yu ha n h o es a , s o u th k o re a te l : +82-2785-6504 avx / ky oc er a hk l t d . , t a i wa n te l : +886-2-2698-8778 avx / ky oc er a (m) sdn b h d, m a l a ysi a te l : +60-4228-1190 avx / ky oc er a in t ern at i o n a l tr a ding c o. l t d . , s ha ng ha i te l : +86-21-6215-5588 avx / ky oc er a asi a l t d . , s h enzen te l : +86-755-3336-0615 avx / ky oc er a in t ern at i o n a l tr a ding c o. l t d . , beijing te l : +86-10-6588-3528 avx / ky oc er a indi a li a is o n offi c e te l : +91-80-6450-0715 americas europe asia-pacific ked h o ng k o ng l t d . te l : +852-2305-1080 / 1223 ked h o ng k o ng l t d . s h enzen te l : +86-755-3398-9600 ked c ompa ny l t d . s ha ng ha i te l : +86-21-6217-1201 ked h o ng k o ng l t d . beijing te l : +86-10-5869-4655 ked t a i wa n l t d . te l : +886-2-2950-0268 ked k o re a yu ha n h o es a , s o u th k o re a te l : +82-2-783-3604 / 6126 ked (s) p t e l t d . sing apo re te l : +65-6509-0328 ky oc er a c o r po r at i o n j apa n te l : +81-75-604-3449 asia-ked (kyocera electronic devices)


▲Up To Search▲   

 
Price & Availability of W2A43C103MAT2A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X